• Title/Summary/Keyword: LSTM network

Search Result 454, Processing Time 0.034 seconds

Remaining Useful Life Prediction for Litium-Ion Batteries Using EMD-CNN-LSTM Hybrid Method (EMD-CNN-LSTM을 이용한 하이브리드 방식의 리튬 이온 배터리 잔여 수명 예측)

  • Lim, Je-Yeong;Kim, Dong-Hwan;Noh, Tae-Won;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.48-55
    • /
    • 2022
  • This paper proposes a battery remaining useful life (RUL) prediction method using a deep learning-based EMD-CNN-LSTM hybrid method. The proposed method pre-processes capacity data by applying empirical mode decomposition (EMD) and predicts the remaining useful life using CNN-LSTM. CNN-LSTM is a hybrid method that combines convolution neural network (CNN), which analyzes spatial features, and long short term memory (LSTM), which is a deep learning technique that processes time series data analysis. The performance of the proposed remaining useful life prediction method is verified using the battery aging experiment data provided by the NASA Ames Prognostics Center of Excellence and shows higher accuracy than does the conventional method.

Text Classification on Social Network Platforms Based on Deep Learning Models

  • YA, Chen;Tan, Juan;Hoekyung, Jung
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • The natural language on social network platforms has a certain front-to-back dependency in structure, and the direct conversion of Chinese text into a vector makes the dimensionality very high, thereby resulting in the low accuracy of existing text classification methods. To this end, this study establishes a deep learning model that combines a big data ultra-deep convolutional neural network (UDCNN) and long short-term memory network (LSTM). The deep structure of UDCNN is used to extract the features of text vector classification. The LSTM stores historical information to extract the context dependency of long texts, and word embedding is introduced to convert the text into low-dimensional vectors. Experiments are conducted on the social network platforms Sogou corpus and the University HowNet Chinese corpus. The research results show that compared with CNN + rand, LSTM, and other models, the neural network deep learning hybrid model can effectively improve the accuracy of text classification.

Mention Detection using Bidirectional LSTM-CRF Model (Bidirectional LSTM-CRF 모델을 이용한 멘션탐지)

  • Park, Cheoneum;Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.224-227
    • /
    • 2015
  • 상호참조해결은 특정 개체에 대해 다르게 표현한 단어들을 서로 연관지어 주며, 이러한 개체에 대해 표현한 단어들을 멘션(mention)이라 하며, 이런 멘션을 찾아내는 것을 멘션탐지(mention detection)라 한다. 멘션은 명사나 명사구를 기반으로 정의되며, 명사구의 경우에는 수식어를 포함하기 때문에 멘션탐지를 순차 데이터 문제(sequence labeling problem)로 정의할 수 있다. 순차 데이터 문제에는 Recurrent Neural Network(RNN) 종류의 모델을 적용할 수 있으며, 모델들은 Long Short-Term Memory(LSTM) RNN, LSTM Recurrent CRF(LSTM-CRF), Bidirectional LSTM-CRF(Bi-LSTM-CRF) 등이 있다. LSTM-RNN은 기존 RNN의 그레디언트 소멸 문제(vanishing gradient problem)를 해결하였으며, LSTM-CRF는 출력 결과에 의존성을 부여하여 순차 데이터 문제에 더욱 최적화 하였다. Bi-LSTM-CRF는 과거입력자질과 미래입력자질을 함께 학습하는 방법으로 최근에 가장 좋은 성능을 보이고 있다. 이에 따라, 본 논문에서는 멘션탐지에 Bi-LSTM-CRF를 적용할 것을 제안하며, 각 딥 러닝 모델들에 대한 비교실험을 보인다.

  • PDF

MALICIOUS URL RECOGNITION AND DETECTION USING ATTENTION-BASED CNN-LSTM

  • Peng, Yongfang;Tian, Shengwei;Yu, Long;Lv, Yalong;Wang, Ruijin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5580-5593
    • /
    • 2019
  • A malicious Uniform Resource Locator (URL) recognition and detection method based on the combination of Attention mechanism with Convolutional Neural Network and Long Short-Term Memory Network (Attention-Based CNN-LSTM), is proposed. Firstly, the WHOIS check method is used to extract and filter features, including the URL texture information, the URL string statistical information of attributes and the WHOIS information, and the features are subsequently encoded and pre-processed followed by inputting them to the constructed Convolutional Neural Network (CNN) convolution layer to extract local features. Secondly, in accordance with the weights from the Attention mechanism, the generated local features are input into the Long-Short Term Memory (LSTM) model, and subsequently pooled to calculate the global features of the URLs. Finally, the URLs are detected and classified by the SoftMax function using global features. The results demonstrate that compared with the existing methods, the Attention-based CNN-LSTM mechanism has higher accuracy for malicious URL detection.

Korean Sentiment Analysis Using Natural Network: Based on IKEA Review Data

  • Sim, YuJeong;Yun, Dai Yeol;Hwang, Chi-gon;Moon, Seok-Jae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.173-178
    • /
    • 2021
  • In this paper, we find a suitable methodology for Korean Sentiment Analysis through a comparative experiment in which methods of embedding and natural network models are learned at the highest accuracy and fastest speed. The embedding method compares word embeddeding and Word2Vec. The model compares and experiments representative neural network models CNN, RNN, LSTM, GRU, Bi-LSTM and Bi-GRU with IKEA review data. Experiments show that Word2Vec and BiGRU had the highest accuracy and second fastest speed with 94.23% accuracy and 42.30 seconds speed. Word2Vec and GRU were found to have the third highest accuracy and fastest speed with 92.53% accuracy and 26.75 seconds speed.

Analysis of streamflow prediction performance by various deep learning schemes

  • Le, Xuan-Hien;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.131-131
    • /
    • 2021
  • Deep learning models, especially those based on long short-term memory (LSTM), have presented their superiority in addressing time series data issues recently. This study aims to comprehensively evaluate the performance of deep learning models that belong to the supervised learning category in streamflow prediction. Therefore, six deep learning models-standard LSTM, standard gated recurrent unit (GRU), stacked LSTM, bidirectional LSTM (BiLSTM), feed-forward neural network (FFNN), and convolutional neural network (CNN) models-were of interest in this study. The Red River system, one of the largest river basins in Vietnam, was adopted as a case study. In addition, deep learning models were designed to forecast flowrate for one- and two-day ahead at Son Tay hydrological station on the Red River using a series of observed flowrate data at seven hydrological stations on three major river branches of the Red River system-Thao River, Da River, and Lo River-as the input data for training, validation, and testing. The comparison results have indicated that the four LSTM-based models exhibit significantly better performance and maintain stability than the FFNN and CNN models. Moreover, LSTM-based models may reach impressive predictions even in the presence of upstream reservoirs and dams. In the case of the stacked LSTM and BiLSTM models, the complexity of these models is not accompanied by performance improvement because their respective performance is not higher than the two standard models (LSTM and GRU). As a result, we realized that in the context of hydrological forecasting problems, simple architectural models such as LSTM and GRU (with one hidden layer) are sufficient to produce highly reliable forecasts while minimizing computation time because of the sequential data nature.

  • PDF

Comparison of Neural Network Techniques for Text Data Analysis

  • Kim, Munhee;Kang, Kee-Hoon
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.231-238
    • /
    • 2020
  • Generally, sequential data refers to data having continuity. Text data, which is a representative type of unstructured data, is also sequential data in that it is necessary to know the meaning of the preceding word in order to know the meaning of the following word or context. So far, many techniques for analyzing sequential data such as text data have been proposed. In this paper, four methods of 1d-CNN, LSTM, BiLSTM, and C-LSTM are introduced, focusing on neural network techniques. In addition, by using this, IMDb movie review data was classified into two classes to compare the performance of the techniques in terms of accuracy and analysis time.

Development of user activity type and recognition technology using LSTM (LSTM을 이용한 사용자 활동유형 및 인식기술 개발)

  • Kim, Young-kyun;Kim, Won-jong;Lee, Seok-won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.360-363
    • /
    • 2018
  • Human activity is influenced by various factors, from individual physical features such as vertebral flexion and pelvic distortion to feelings such as joy, anger, and sadness. However, the nature of these behaviors changes over time, and behavioral characteristics do not change much in the short term. The activity data of a person has a time series characteristic that changes with time and a certain regularity for each action. In this study, we applied LSTM, a kind of cyclic neural network to deal with time - series characteristics, to the technique of recognizing activity type and improved recognition rate of activity type by measuring time and parameter optimization of components of LSTM model.

  • PDF

Enhancing the Text Mining Process by Implementation of Average-Stochastic Gradient Descent Weight Dropped Long-Short Memory

  • Annaluri, Sreenivasa Rao;Attili, Venkata Ramana
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.352-358
    • /
    • 2022
  • Text mining is an important process used for analyzing the data collected from different sources like videos, audio, social media, and so on. The tools like Natural Language Processing (NLP) are mostly used in real-time applications. In the earlier research, text mining approaches were implemented using long-short memory (LSTM) networks. In this paper, text mining is performed using average-stochastic gradient descent weight-dropped (AWD)-LSTM techniques to obtain better accuracy and performance. The proposed model is effectively demonstrated by considering the internet movie database (IMDB) reviews. To implement the proposed model Python language was used due to easy adaptability and flexibility while dealing with massive data sets/databases. From the results, it is seen that the proposed LSTM plus weight dropped plus embedding model demonstrated an accuracy of 88.36% as compared to the previous models of AWD LSTM as 85.64. This result proved to be far better when compared with the results obtained by just LSTM model (with 85.16%) accuracy. Finally, the loss function proved to decrease from 0.341 to 0.299 using the proposed model

Time Series Crime Prediction Using a Federated Machine Learning Model

  • Salam, Mustafa Abdul;Taha, Sanaa;Ramadan, Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.119-130
    • /
    • 2022
  • Crime is a common social problem that affects the quality of life. As the number of crimes increases, it is necessary to build a model to predict the number of crimes that may occur in a given period, identify the characteristics of a person who may commit a particular crime, and identify places where a particular crime may occur. Data privacy is the main challenge that organizations face when building this type of predictive models. Federated learning (FL) is a promising approach that overcomes data security and privacy challenges, as it enables organizations to build a machine learning model based on distributed datasets without sharing raw data or violating data privacy. In this paper, a federated long short- term memory (LSTM) model is proposed and compared with a traditional LSTM model. Proposed model is developed using TensorFlow Federated (TFF) and the Keras API to predict the number of crimes. The proposed model is applied on the Boston crime dataset. The proposed model's parameters are fine tuned to obtain minimum loss and maximum accuracy. The proposed federated LSTM model is compared with the traditional LSTM model and found that the federated LSTM model achieved lower loss, better accuracy, and higher training time than the traditional LSTM model.