• 제목/요약/키워드: LSTM CRF

검색결과 60건 처리시간 0.029초

Bidirectional LSTM-CRF 모델을 이용한 멘션탐지 (Mention Detection using Bidirectional LSTM-CRF Model)

  • 박천음;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.224-227
    • /
    • 2015
  • 상호참조해결은 특정 개체에 대해 다르게 표현한 단어들을 서로 연관지어 주며, 이러한 개체에 대해 표현한 단어들을 멘션(mention)이라 하며, 이런 멘션을 찾아내는 것을 멘션탐지(mention detection)라 한다. 멘션은 명사나 명사구를 기반으로 정의되며, 명사구의 경우에는 수식어를 포함하기 때문에 멘션탐지를 순차 데이터 문제(sequence labeling problem)로 정의할 수 있다. 순차 데이터 문제에는 Recurrent Neural Network(RNN) 종류의 모델을 적용할 수 있으며, 모델들은 Long Short-Term Memory(LSTM) RNN, LSTM Recurrent CRF(LSTM-CRF), Bidirectional LSTM-CRF(Bi-LSTM-CRF) 등이 있다. LSTM-RNN은 기존 RNN의 그레디언트 소멸 문제(vanishing gradient problem)를 해결하였으며, LSTM-CRF는 출력 결과에 의존성을 부여하여 순차 데이터 문제에 더욱 최적화 하였다. Bi-LSTM-CRF는 과거입력자질과 미래입력자질을 함께 학습하는 방법으로 최근에 가장 좋은 성능을 보이고 있다. 이에 따라, 본 논문에서는 멘션탐지에 Bi-LSTM-CRF를 적용할 것을 제안하며, 각 딥 러닝 모델들에 대한 비교실험을 보인다.

  • PDF

문자 기반 LSTM-CRF 한국어 개체명 인식을 위한 사전 자질 활용 (Lexicon Feature Infused Character-Based LSTM CRFs for Korean Named Entity Recognition)

  • 민진우;나승훈
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.99-101
    • /
    • 2016
  • 문자 기반 LSTM CRF는 개체명 인식에서 높은 인식을 보여주고 있는 LSTM-CRF 방식에서 미등록어 문제를 해결하기 위해 단어 단위의 임베딩 뿐만 아니라 단어를 구성하는 문자로부터 단어 임베딩을 합성해 내는 방식으로 기존의 LSTM CRF에서의 성능 향상을 가져왔다. 한편, 개체명 인식에서 어휘 사전은 성능향상을 위한 외부 리소스원으로 활용하고 있는데 다양한 사전 매칭 방법이 파생될 수 있음에도 이들 자질들에 대한 비교 연구가 이루어지지 않았다. 본 논문에서는 개체명 인식을 위해 다양한 사전 매칭 자질들을 정의하고 이들을 LSTM-CRF의 입력 자질로 활용했을 때의 성능 비교 결과를 제시한다. 실험 결과 사전 자질이 추가된 LSTM-CRF는 ETRI 개체명 말뭉치의 학습데이터에서 F1 measure 기준 최대 89.34%의 성능까지 달성할 수 있었다.

  • PDF

문자 기반 LSTM-CRF 한국어 개체명 인식을 위한 사전 자질 활용 (Lexicon Feature Infused Character-Based LSTM CRFs for Korean Named Entity Recognition)

  • 민진우;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.99-101
    • /
    • 2016
  • 문자 기반 LSTM CRF는 개체명 인식에서 높은 인식을 보여주고 있는 LSTM-CRF 방식에서 미등록어 문제를 해결하기 위해 단어 단위의 임베딩 뿐만 아니라 단어를 구성하는 문자로부터 단어 임베딩을 합성해 내는 방식으로 기존의 LSTM CRF에서의 성능 향상을 가져왔다. 한편, 개체명 인식에서 어휘 사전은 성능 향상을 위한 외부 리소스원으로 활용하고 있는데 다양한 사전 매칭 방법이 파생될 수 있음에도 이들 자질들에 대한 비교 연구가 이루어지지 않았다. 본 논문에서는 개체명 인식을 위해 다양한 사전 매칭 자질들을 정의하고 이들을 LSTM-CRF의 입력 자질로 활용했을 때의 성능 비교 결과를 제시한다. 실험 결과 사전 자질이 추가된 LSTM-CRF는 ETRI 개체명 말뭉치의 학습데이터에서 F1 measure 기준 최대 89.34%의 성능까지 달성할 수 있었다.

  • PDF

한국 전통문화 말뭉치구축 및 Bi-LSTM-CNN-CRF를 활용한 전통문화 개체명 인식 모델 개발 (Constructing for Korean Traditional culture Corpus and Development of Named Entity Recognition Model using Bi-LSTM-CNN-CRFs)

  • 김경민;김규경;조재춘;임희석
    • 한국융합학회논문지
    • /
    • 제9권12호
    • /
    • pp.47-52
    • /
    • 2018
  • 개체명 인식(Named Entity Recognition)시스템은 문서로부터 고유한 의미를 가질 수 있는 인명(PS), 지명(LC), 기관명(OG) 등의 개체명을 추출하고 추출된 개체명의 범주를 결정하는 시스템이다. 최근 딥러닝 방식을 이용한 개체명 인식 연구에서 입력 데이터의 앞, 뒤 방향을 고려한 LSTM 기반의 Bi-LSTM 모델로부터 출력 데이터 간의 전이 확률을 이용한 CRF를 결합한 방식의 Bi-LSTM-CRF가 우수한 성능을 보이고, 문자 및 단어 단위의 효율적인 임베딩 벡터생성에 관한 연구와 CNN, LSTM을 활용한 모델에서도 좋은 성능을 보여주고 있다. 본 연구에서는 한국어 개체명 인식시스템 성능 향상을 위해 자질을 보강한 Bi-LSTM-CNN-CRF 모델에 관해 기술하고 전통문화 말뭉치구축 방식에 대해 제안한다. 그리고 구축한 말뭉치를 한국어 개체명 인식 성능 향상을 위한 자질 보강 모델 Bi-LSTM-CNN-CRF로 학습한 결과에 대해 제안한다.

Backward LSTM CRF를 이용한 한국어 의미역 결정 (Korean Semantic Role Labeling using Backward LSTM CRF)

  • 배장성;이창기;임수종
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.194-197
    • /
    • 2015
  • Long Short-term Memory Network(LSTM) 기반 Recurrent Neural Network(RNN)는 순차 데이터를 모델링 할 수 있는 딥 러닝 모델이다. 기존 RNN의 그래디언트 소멸 문제(vanishing gradient problem)를 해결한 LSTM RNN은 멀리 떨어져 있는 이전의 입력 정보를 볼 수 있다는 장점이 있어 음성 인식 및 필기체 인식 등의 분야에서 좋은 성능을 보이고 있다. 또한 LSTM RNN 모델에 의존성(전이 확률)을 추가한 LSTM CRF모델이 자연어처리의 한 분야인 개체명 인식에서 우수한 성능을 보이고 있다. 본 논문에서는 한국어 문장의 지배소가 문장 후위에 나타나는 점에 착안하여 Backward 방식의 LSTM CRF 모델을 제안하고 이를 한국어 의미역 결정에 적용하여 기존 연구보다 더 높은 성능을 얻을 수 있음을 보인다.

  • PDF

품사 분포와 Bidirectional LSTM CRFs를 이용한 음절 단위 형태소 분석기 (Syllable-based Korean POS Tagging using POS Distribution and Bidirectional LSTM CRFs)

  • 김혜민;윤정민;안재현;배경만;고영중
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.3-8
    • /
    • 2016
  • 형태소 분석기는 많은 자연어 처리 영역에서 필수적인 언어 도구로 활용되기 때문에 형태소에 대한 품사를 결정하는 것은 매우 중요하다. 최근 음절 기반으로 형태소의 품사를 태깅하는 방법에 대한 연구들이 많이 진행되고 있다. 음절 단위 형태소 분석은 음절 단위로 분리된 형태소에 대해서 기계학습을 이용하여 분리된 음절 단위로 품사를 태깅하는 단계를 가진다. 본 논문에서는 기존의 CRF를 이용한 음절 단위 품사 태깅 방법을 개선하기 위해 bi-LSTM-CRFs를 이용한 방법을 제안한다. 또한, bi-LSTM-CRFs의 입력을 음절의 품사 분포 벡터를 이용해 확장함으로써 음절 단위 품사 태깅의 성능을 향상 시켰다.

  • PDF

음절 임베딩과 양방향 LSTM-CRF를 이용한 한국어 문장 자동 띄어쓰기 (Bi-LSTM-CRF and Syllable Embedding for Automatic Spacing of Korean Sentences)

  • 이현영;강승식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.605-607
    • /
    • 2018
  • 본 논문에서는 음절 임베딩과 양방향 LSTM-CRF 모델을 이용한 한국어 문장 자동 띄어쓰기 시스템을 제안한다. 문장에 대한 자질 벡터 표현을 위해 문장을 구성하는 음절을 Unigram 및 Bigram으로 나누어 각 음절을 연속적인 벡터 공간에 표현하고, 양방향 LSTM을 이용하여 현재 자질에 양방향 자질들과 의존성을 부여한 새로운 자질 벡터를 생성한다. 이 새로운 자질 벡터는 전방향 신경망과 선형체인(Linear-Chain) CRF를 이용하여 최적의 띄어쓰기 태그 열을 예측하고, 생성된 띄어쓰기 태그를 기반으로 문장 자동 띄어쓰기를 수행하였다. 문장 13,500개와 277,718개 어절로 이루어진 학습 데이터 집합과 문장 1,500개와 31,107개 어절로 이루어진 테스트 집합의 학습 및 평가 결과는 97.337%의 음절 띄어쓰기 태그 분류 정확도를 보였다.

  • PDF

품사 분포와 Bidirectional LSTM CRFs를 이용한 음절 단위 형태소 분석기 (Syllable-based Korean POS Tagging using POS Distribution and Bidirectional LSTM CRFs)

  • 김혜민;윤정민;안재현;배경만;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.3-8
    • /
    • 2016
  • 형태소 분석기는 많은 자연어 처리 영역에서 필수적인 언어 도구로 활용되기 때문에 형태소에 대한 품사를 결정하는 것은 매우 중요하다. 최근 음절 기반으로 형태소의 품사를 태깅하는 방법에 대한 연구들이 많이 진행되고 있다. 음절 단위 형태소 분석은 음절 단위로 분리된 형태소에 대해서 기계학습을 이용하여 분리된 음절 단위로 품사를 태깅하는 단계를 가진다. 본 논문에서는 기존의 CRF를 이용한 음절 단위 품사 태깅 방법을 개선하기 위해 bi-LSTM-CRFs를 이용한 방법을 제안한다. 또한, bi-LSTM-CRFs의 입력을 음절의 품사 분포 벡터를 이용해 확장함으로써 음절 단위 품사 태깅의 성능을 향상 시켰다.

  • PDF

LSTM-CRF를 이용한 생명과학분야 개체명 인식 (Bio-NER using LSTM-CRF)

  • 최경호;황현선;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.85-89
    • /
    • 2015
  • 본 논문에서는 시퀀스 레이블링 문제에 적합하다고 알려진 Long Short Term Memory Recurrent Neural Network에 아웃풋간의 의존관계를 추가한 LSTM-CRF(Conditional Random Field)를 이용하여 생명과학분야 개체명 인식 시스템을 구축하였다. 학습 및 평가를 위해 BioNLP 2011-st REL data를 개체명 인식 실험에 사용하였으며, 실험결과 LSTM-CRF를 사용한 시스템은 81.83의 F1-score를 기록해, 기존의 시스템인 "BANNER"의 F1-score 81.96과 비슷한 성능을 보였다.

  • PDF

Bi-LSTM-CRF 앙상블 모델을 이용한 한국어 공간 정보 추출 (Korean Spatial Information Extraction using Bi-LSTM-CRF Ensemble Model)

  • 민태홍;신형진;이재성
    • 한국콘텐츠학회논문지
    • /
    • 제19권11호
    • /
    • pp.278-287
    • /
    • 2019
  • 공간 정보 추출은 자연어 텍스트에 있는 정적 및 동적인 공간 정보를 공간 개체와 그들 사이의 관계로 명확히 표시하여 추출하는 것을 말한다. 이 논문은 2단계 양방향 LSTM-CRF 앙상블 모델을 사용하여 한국어 공간 정보를 추출할 수 있는 심층 학습 방법을 제안한다. 또한 공간 개체 추출과 공간 관계 속성 추출을 통합한 모델을 소개한다. 한국어 공간정보 말뭉치(Korean SpaceBank)를 사용하여 실험한 결과 제안한 심층학습 방법이 기존의 CRF 모델보다 우수함을 보였으며, 특히 제안한 앙상블 모델이 단일 모델보다 더 우수한 성능을 보였다.