• Title/Summary/Keyword: LSTM 언어모델

Search Result 100, Processing Time 0.029 seconds

Bidirectional Stack Pointer Network for Korean Dependency Parsing (Bidirectional Stack Pointer Network를 이용한 한국어 의존 파싱)

  • Hong, Seung-Yean;Na, Seung-Hoon;Shin, Jong-Hoon;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.19-22
    • /
    • 2018
  • 본 논문에서는 기존 Stack Pointer Network의 의존 파싱 모델을 확장한 Bi-Stack Pointer Network를 제안한다. Stack Pointer Network는 기존의 Pointer Network에 내부 stack을 만들어 전체 문장을 읽어 dependency tree를 구성한다. stack은 tree의 깊이 우선 탐색을 통해 선정되고 Pointer Network는 stack의 top 단어(head)의 자식(child)을 선택한다. 제안한 모델은 기존의 Stack Pointer Network가 지배소(head)정보로 의존소(child)를 예측하는 부분에 Biaffine attention을 통해 의존소(child)에서 지배소(head)를 예측하는 방향을 추가하여 양방향 예측이 가능하게 한 모델이다. 실험 결과, 제안 Bi-Stack Pointer Network모델은 UAS 91.53%, LAS 90.93%의 성능을 보여주어 기존 최고 성능을 개선시켰다.

  • PDF

Hypernews Detection using Sentence BERT Embedding (Sentence BERT 임베딩을 이용한 과편향 뉴스 판별)

  • Lim, Jungwoo;Whang, Taesun;Oh, Dongsuk;Yang, Kisu;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.388-391
    • /
    • 2019
  • 과편향 뉴스 판별(hyperpartisan news detection)은 뉴스 기사가 특정 인물 또는 정당에 편향되었는지 판단하는 task이다. 이를 위해 feature-based ELMo + CNN 모델이 제안되었으나, 이는 문서 임베딩이 아닌 단어 임베딩의 평균을 사용한다는 한계가 존재한다. 따라서 본 논문에서는 feature-based 접근법을 따르며 Sentence-BERT(SentBERT)의 문서 임베딩을 이용한 feature-based SentBERT 기반의 과편향 뉴스 판별 모델을 제안한다. 제안 모델의 효과를 입증하기 위해 ELMO, BERT, SBERT와 CNN, BiLSTM을 적용한 비교 실험을 진행하였고, 기존 state-of-the-art 모델보다 f1-score 기준 1.3%p 높은 성능을 보였다.

  • PDF

Cross-Validated Ensemble Methods in Natural Language Inference (자연어 추론에서의 교차 검증 앙상블 기법)

  • Yang, Kisu;Whang, Taesun;Oh, Dongsuk;Park, Chanjun;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.8-11
    • /
    • 2019
  • 앙상블 기법은 여러 모델을 종합하여 최종 판단을 산출하는 기계 학습 기법으로서 딥러닝 모델의 성능 향상을 보장한다. 하지만 대부분의 기법은 앙상블만을 위한 추가적인 모델 또는 별도의 연산을 요구한다. 이에 우리는 앙상블 기법을 교차 검증 방법과 결합하여 앙상블 연산을 위한 비용을 줄이며 일반화 성능을 높이는 교차 검증 앙상블 기법을 제안한다. 본 기법의 효과를 입증하기 위해 MRPC, RTE 데이터셋과 BiLSTM, CNN, BERT 모델을 이용하여 기존 앙상블 기법보다 향상된 성능을 보인다. 추가로 교차 검증에서 비롯한 일반화 원리와 교차 검증 변수에 따른 성능 변화에 대하여 논의한다.

  • PDF

Error Correction for Korean Speech Recognition using a LSTM-based Sequence-to-Sequence Model

  • Jin, Hye-won;Lee, A-Hyeon;Chae, Ye-Jin;Park, Su-Hyun;Kang, Yu-Jin;Lee, Soowon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.1-7
    • /
    • 2021
  • Recently, since most of the research on correcting speech recognition errors is based on English, there is not enough research on Korean speech recognition. Compared to English speech recognition, however, Korean speech recognition has many errors due to the linguistic characteristics of Korean language, such as Korean Fortis and Korean Liaison, thus research on Korean speech recognition is needed. Furthermore, earlier works primarily focused on editorial distance algorithms and syllable restoration rules, making it difficult to correct the error types of Korean Fortis and Korean Liaison. In this paper, we propose a context-sensitive post-processing model of speech recognition using a LSTM-based sequence-to-sequence model and Bahdanau attention mechanism to correct Korean speech recognition errors caused by the pronunciation. Experiments showed that by using the model, the speech recognition performance was improved from 64% to 77% for Fortis, 74% to 90% for Liaison, and from 69% to 84% for average recognition than before. Based on the results, it seems possible to apply the proposed model to real-world applications based on speech recognition.

Korean sentence spacing correction model using syllable and morpheme information (음절과 형태소 정보를 이용한 한국어 문장 띄어쓰기 교정 모델)

  • Choi, Jeong-Myeong;Oh, Byoung-Doo;Heo, Tak-Sung;Jeong, Yeong-Seok;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.141-144
    • /
    • 2020
  • 한국어에서 문장의 가독성이나 맥락 파악을 위해 띄어쓰기는 매우 중요하다. 또한 자연 언어 처리를 할 때 띄어쓰기 오류가 있는 문장을 사용하면 문장의 구조가 달라지기 때문에 성능에 영향을 미칠 수 있다. 기존 연구에서는 N-gram 기반 통계적인 방법과 형태소 분석기를 이용하여 띄어쓰기 교정을 해왔다. 최근 들어 심층 신경망을 활용하는 많은 띄어쓰기 교정 연구가 진행되고 있다. 기존 심층 신경망을 이용한 연구에서는 문장을 음절 단위 또는 형태소 단위로 처리하여 교정 모델을 만들었다. 본 연구에서는 음절과 형태소 단위 모두 모델의 입력으로 사용하여 두 정보를 결합하여 띄어쓰기 교정 문제를 해결하고자 한다. 모델은 문장의 음절과 형태소 시퀀스에서 지역적 정보를 학습할 수 있는 Convolutional Neural Network와 순서정보를 정방향, 후방향으로 학습할 수 있는 Bidirectional Long Short-Term Memory 구조를 사용한다. 모델의 성능은 음절의 정확도와 어절의 정밀도, 어절의 재현율, 어절의 F1 score를 사용해 평가하였다. 제안한 모델의 성능 평가 결과 어절의 F1 score가 96.06%로 우수한 성능을 냈다.

  • PDF

Predicate Recognition Method using BiLSTM Model and Morpheme Features (BiLSTM 모델과 형태소 자질을 이용한 서술어 인식 방법)

  • Nam, Chung-Hyeon;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.24-29
    • /
    • 2022
  • Semantic role labeling task used in various natural language processing fields, such as information extraction and question answering systems, is the task of identifying the arugments for a given sentence and predicate. Predicate used as semantic role labeling input are extracted using lexical analysis results such as POS-tagging, but the problem is that predicate can't extract all linguistic patterns because predicate in korean language has various patterns, depending on the meaning of sentence. In this paper, we propose a korean predicate recognition method using neural network model with pre-trained embedding models and lexical features. The experiments compare the performance on the hyper parameters of models and with or without the use of embedding models and lexical features. As a result, we confirm that the performance of the proposed neural network model was 92.63%.

Attention-based Next Utterance Classification in Dialogue System (Attention 기반의 대화 발화 예측 모델)

  • Whang, Taesun;Lee, Dongyub;Lim, Hueiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.40-43
    • /
    • 2018
  • 대화 발화 예측(Next Utterance Classification)은 Multi-turn 대화에서 마지막에 올 발화를 정답 후보들 중에서 예측을 하는 연구이다. 기존에 제안된 LSTM 기반의 Dual Encoder를 이용한 모델에서는 대화와 정답 발화에 대한 관계를 고려하지 않는 문제와 대화의 길이가 너무 길어 중간 정보의 손실되는 문제가 존재한다. 본 연구에서는 이러한 두 문제를 해결하기 위하여 ESIM구조를 통한 단어 단위의 attention, 대화의 turn별 문장 단위의 attention을 제안한다. 실험 결과 총 5000개의 검증 대화 데이터에 대하여 1 in 100 Recall@1의 성능이 37.64%로 기존 모델 대비 약 2배 높은 성능 향상을 나타내었다.

  • PDF

Integrated Dialogue Analysis using Long Short-Term Memory (Long Short-Term Memory를 이용한 통합 대화 분석)

  • Kim, Min-Kyoung;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.119-121
    • /
    • 2016
  • 최근 사람과 컴퓨터가 대화를 하는 채팅시스템 연구가 활발해지고 있다. 컴퓨터가 사람의 말에 적절한 응답을 하기 위해선 그 의미를 분석할 필요가 있다. 발화에 대한 의미 분석의 기본이 되는 연구로 감정분석과 화행분석이 있다. 그러나 이 둘은 서로 밀접한 연관이 있음에도 불구하고 함께 분석하는 연구가 시도 되지 않았다. 본 연구에서는 Long Short-term Memory(LSTM)를 이용하여 대화체 문장의 감정과 화행, 서술자를 동시에 분석하는 통합 대화 분석모델을 제안한다. 사랑 도메인 데이터를 사용한 실험에서 제안 모델은 감정 58.08%, 화행 82.60%, 서술자 62.74%의 정확도(Accuracy)를 보였다.

  • PDF

Guided Sequence Generation using Trie-based Dictionary for ASR Error Correction (음성 인식 오류 수정을 위한 Trie 기반 사전을 이용한 Guided Sequence Generation)

  • Choi, Junhwi;Ryu, Seonghan;Yu, Hwanjo;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.211-216
    • /
    • 2016
  • 현재 나오는 많은 음성 인식기가 대체로 높은 정확도를 가지고 있더라도, 음성 인식 오류는 여전히 빈번하게 발생한다. 음성 인식 오류는 관련 어플리케이션에 있어 많은 오동작의 원인이 되므로, 음성 인식 오류는 고쳐져야 한다. 본 논문에서는 Trie 기반 사전을 이용한 Guided Sequence Generation을 제안한다. 제안하는 모델은 목표 단어와 그 단어의 문맥을 Encoding하고, 그로부터 단어를 Character 단위로 Decoding하며 단어를 Generation한다. 올바른 단어를 생성하기 위하여, Generation 시에 Trie 기반 사전을 통해 유도한다. 실험을 위해 모델은 영어 TV 가이드 도메인의 말뭉치의 음성 인식 오류를 단순히 Simulation하여 만들어진 말뭉치로부터 훈련되고, 같은 도메인의 음성 인식 문장과 결과로 이루어진 병렬 말뭉치에서 성능을 평가하였다. Guided Generation은 Unguided Generation에 비해 14.9% 정도의 오류를 줄였다.

  • PDF

Target extraction in Korean aspect-based sentiment analysis using stepwise feature of multi-task learning model (다중 작업 학습의 단계적 특징을 활용한 한국어 속성 기반 감성 분석에서의 대상 추출)

  • Ho-Min Park;Jae-Hoon Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.630-633
    • /
    • 2022
  • 속성기반 감성 분석은 텍스트 내에 존재하는 속성에 대해 세분화된 감성 분석을 수행하는 과제를 말한다. 세분화된 감성분석을 정확하게 수행하기 위해서는 텍스트에 존재하는 감성 표현과 그것이 수식하는 대상에 대한 정보가 반드시 필요하다. 그리고 순서대로 두 가지 정보는 이후 정보를 텍스트에서 추출하기 위해 중요한 단서가 된다. 따라서 본 논문에서는 KorBERT와 Bi-LSTM을 이용한 단계적 특징을 활용한 다중 작업 학습 모델을 사용하여 한국어 감성 분석 말뭉치의 감성 표현과 대상을 추출하는 작업을 수행하였다. 제안한 모델을 한국어 감성 분석 말뭉치로 학습 및 평가한 결과, 감성 표현 추출 작업의 출력을 추가적인 특성으로 전달하여 대상 추출 작업의 성능을 향상시킬 수 있음을 보였다.

  • PDF