• 제목/요약/키워드: LSTM 언어모델

검색결과 100건 처리시간 0.026초

문서 주제에 따른 문장 생성을 위한 LSTM 기반 언어 학습 모델 (LSTM based Language Model for Topic-focused Sentence Generation)

  • 김다해;이지형
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제54차 하계학술대회논문집 24권2호
    • /
    • pp.17-20
    • /
    • 2016
  • 딥러닝 기법이 발달함에 따라 텍스트에 내재된 의미 및 구문을 어떠한 벡터 공간 상에 표현하기 위한 언어 모델이 활발히 연구되어 왔다. 이를 통해 자연어 처리를 기반으로 하는 감성 분석 및 문서 분류, 기계 번역 등의 분야가 진보되었다. 그러나 대부분의 언어 모델들은 텍스트에 나타나는 단어들의 일반적인 패턴을 학습하는 것을 기반으로 하기 때문에, 문서 요약이나 스토리텔링, 의역된 문장 판별 등과 같이 보다 고도화된 자연어의 이해를 필요로 하는 연구들의 경우 주어진 텍스트의 주제 및 의미를 고려하기에 한계점이 있다. 이와 같은 한계점을 고려하기 위하여, 본 연구에서는 기존의 LSTM 모델을 변형하여 문서 주제와 해당 주제에서 단어가 가지는 문맥적인 의미를 단어 벡터 표현에 반영할 수 있는 새로운 언어 학습 모델을 제안하고, 본 제안 모델이 문서의 주제를 고려하여 문장을 자동으로 생성할 수 있음을 보이고자 한다.

  • PDF

언어모델의 단어벡터를 이용한 영화 텍스트 분석 기법 연구 (Analysis Method Study of Film Text using Word Vectors of Language Model)

  • 고광호;백주련
    • 문화기술의 융합
    • /
    • 제10권6호
    • /
    • pp.703-708
    • /
    • 2024
  • 언어모델을 구축하기 위한 딥러닝 기법인 LSTM의 경우 대형언어모델과 달리 컴퓨팅 자원이 작은 시스템에서도 수월하게 학습시킬 수 있다. 소규모 텍스트에 대해 LSTM 기반의 언어모델을 학습시키고, 텍스트를 구성하는 어휘의 단어벡터를 이용하여 해당 텍스트의 주요 주제어에 대해 객관적인 의미 및 관계 분석을 할 수 있는 융복합적인 기법을 제안하였다. 데이비드 로워리 감독의 2021년도 영화 '그린 나이트'의 영어 대본을 텍스트로 삼아 학습시킨 소규모 언어모델의 단어벡터를 이용하여 주요 주제어의 의미와 관계를 분석할 수 있는 기법을 제안하였다. 단어벡터의 유사도 연산을 통해 각 주제어들과 유사도가 높은 단어를 분석하여 그 의미와 상징성을 객관적으로 분석할 수 있고, 차원감소시킨 2차원 단어벡터를 도시하여 각 주제어들의 관계를 직관적으로 인식할 수 있었다. LSTM 방식의 소규모 언어모델을 이용하여 학습에 필요한 비용을 최소화하면서도 복잡한 텍스트를 분석할 수 있는 단어벡터 활용법을 제안하였다.

LSTM 언어모델 기반 한국어 문장 생성 (LSTM Language Model Based Korean Sentence Generation)

  • 김양훈;황용근;강태관;정교민
    • 한국통신학회논문지
    • /
    • 제41권5호
    • /
    • pp.592-601
    • /
    • 2016
  • 순환신경망은 순차적이거나 길이가 가변적인 데이터에 적합한 딥러닝 모델이다. LSTM은 순환신경망에서 나타나는 기울기 소멸문제를 해결함으로써 시퀀스 구성 요소간의 장기의존성을 유지 할 수 있다. 본 논문에서는 LSTM에 기반한 언어모델을 구성하여, 불완전한 한국어 문장이 입력으로 주어졌을 때 뒤 이어 나올 단어들을 예측하여 완전한 문장을 생성할 수 있는 방법을 제안한다. 제안된 방법을 평가하기 위해 여러 한국어 말뭉치를 이용하여 모델을 학습한 다음, 한국어 문장의 불완전한 부분을 생성하는 실험을 진행하였다. 실험 결과, 제시된 언어모델이 자연스러운 한국어 문장을 생성해 낼 수 있음을 확인하였다. 또한 문장 최소 단위를 어절로 설정한 모델이 다른 모델보다 문장 생성에서 더 우수한 결과를 보임을 밝혔다.

Bidirectional LSTM-CRF 모델을 이용한 멘션탐지 (Mention Detection using Bidirectional LSTM-CRF Model)

  • 박천음;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.224-227
    • /
    • 2015
  • 상호참조해결은 특정 개체에 대해 다르게 표현한 단어들을 서로 연관지어 주며, 이러한 개체에 대해 표현한 단어들을 멘션(mention)이라 하며, 이런 멘션을 찾아내는 것을 멘션탐지(mention detection)라 한다. 멘션은 명사나 명사구를 기반으로 정의되며, 명사구의 경우에는 수식어를 포함하기 때문에 멘션탐지를 순차 데이터 문제(sequence labeling problem)로 정의할 수 있다. 순차 데이터 문제에는 Recurrent Neural Network(RNN) 종류의 모델을 적용할 수 있으며, 모델들은 Long Short-Term Memory(LSTM) RNN, LSTM Recurrent CRF(LSTM-CRF), Bidirectional LSTM-CRF(Bi-LSTM-CRF) 등이 있다. LSTM-RNN은 기존 RNN의 그레디언트 소멸 문제(vanishing gradient problem)를 해결하였으며, LSTM-CRF는 출력 결과에 의존성을 부여하여 순차 데이터 문제에 더욱 최적화 하였다. Bi-LSTM-CRF는 과거입력자질과 미래입력자질을 함께 학습하는 방법으로 최근에 가장 좋은 성능을 보이고 있다. 이에 따라, 본 논문에서는 멘션탐지에 Bi-LSTM-CRF를 적용할 것을 제안하며, 각 딥 러닝 모델들에 대한 비교실험을 보인다.

  • PDF

The Ability of L2 LSTM Language Models to Learn the Filler-Gap Dependency

  • Kim, Euhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권11호
    • /
    • pp.27-40
    • /
    • 2020
  • 본 논문은 장단기기억신경망(LSTM)이 영어를 배우면서 학습한 암묵적 통사 관계인 필러-갭 의존 관계를 조사하여 영어 문장 학습량과 한국인 영어 학습자(L2ers)의 문장 처리 패턴 간의 상관관계를 규명한다. 이를 위해, 먼저 장단기기억신경망 언어모델(LSTM LM)을 구축하였다. 이 모델은 L2ers가 영어 학습 과정에서 잠재적으로 배울 수 있는 L2 코퍼스의 영어 문장들로 심층학습을 하였다. 다음으로, 이 언어 모델을 이용하여 필러-갭 의존 관계 구조를 위반한 영어 문장을 대상으로 의문사 상호작용 효과(wh-licensing interaction effect) 즉, 정보 이론의 정보량인 놀라움(surprisal)의 정도를 계산하여 문장 처리 양상을 조사하였다. 또한 L2ers 언어모델과 상응하는 원어민 언어모델을 비교 분석함으로써, 두 언어모델이 문장 처리에서 필러-갭 의존 관계에 내재된 추상적 구문 구조를 추적할 수 있음을 보여주었을 뿐만 아니라, 또한 선형 혼합효과 회귀모델을 사용하여 본 논문의 중심 연구 주제인 의존 관계 처리에 있어서 원어민 언어모델과 L2ers 언어모델간 통계적으로 유의미한 차이가 존재함을 규명하였다.

Probing Sentence Embeddings in L2 Learners' LSTM Neural Language Models Using Adaptation Learning

  • Kim, Euhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권3호
    • /
    • pp.13-23
    • /
    • 2022
  • Prasad et al.는 사전학습(pre-trained)한 신경망 L1 글로다바(Gulordava) 언어모델을 여러 유형의 영어 관계절과 등위절 문장들로 적응 학습(adaptation learning)시켜 문장 간 유사성(sentence similarity)을 평가할 수 있는 통사 프라이밍(syntactic priming)-기반 프로빙 방법((probing method)을 제안했다. 본 논문에서는 한국인 영어학습자가 배우는 영어 자료를 바탕으로 훈련된 L2 LSTM 신경망 언어 모델의 영어 관계절 혹은 등위절 구조의 문장들에 대한 임베딩 표현 방식을 평가하기 위하여 프로빙 방법을 적용한다. 프로빙 실험은 사전 학습한 LSTM 언어 모델을 기반으로 추가로 적응 학습을 시킨 LSTM 언어 모델을 사용하여 문장 임베딩 벡터 표현의 통사적 속성을 추적한다. 이 프로빙 실험을 위한 데이터셋은 문장의 통사 구조를 생성하는 템플릿을 사용하여 자동으로 구축했다. 특히, 프로빙 과제별 문장의 통사적 속성을 분류하기 위해 통사 프라이밍을 이용한 언어 모델의 적응 효과(adaptation effect)를 측정했다. 영어 문장에 대한 언어 모델의 적응 효과와 통사적 속성 관계를 복합적으로 통계분석하기 위해 선형 혼합효과 모형(linear mixed-effects model) 분석을 수행했다. 제안한 L2 LSTM 언어 모델이 베이스라인 L1 글로다바 언어 모델과 비교했을 때, 프로빙 과제별 동일한 양상을 공유함을 확인했다. 또한 L2 LSTM 언어 모델은 다양한 관계절 혹은 등위절이 있는 문장들을 임베딩 표현할 때 관계절 혹은 등위절 세부 유형별로 통사적 속성에 따라 계층 구조로 구분하고 있음을 확인했다.

Backward LSTM CRF를 이용한 한국어 의미역 결정 (Korean Semantic Role Labeling using Backward LSTM CRF)

  • 배장성;이창기;임수종
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.194-197
    • /
    • 2015
  • Long Short-term Memory Network(LSTM) 기반 Recurrent Neural Network(RNN)는 순차 데이터를 모델링 할 수 있는 딥 러닝 모델이다. 기존 RNN의 그래디언트 소멸 문제(vanishing gradient problem)를 해결한 LSTM RNN은 멀리 떨어져 있는 이전의 입력 정보를 볼 수 있다는 장점이 있어 음성 인식 및 필기체 인식 등의 분야에서 좋은 성능을 보이고 있다. 또한 LSTM RNN 모델에 의존성(전이 확률)을 추가한 LSTM CRF모델이 자연어처리의 한 분야인 개체명 인식에서 우수한 성능을 보이고 있다. 본 논문에서는 한국어 문장의 지배소가 문장 후위에 나타나는 점에 착안하여 Backward 방식의 LSTM CRF 모델을 제안하고 이를 한국어 의미역 결정에 적용하여 기존 연구보다 더 높은 성능을 얻을 수 있음을 보인다.

  • PDF

Layer Normalized LSTM CRF를 이용한 한국어 의미역 결정 (Layer Normalized LSTM CRFs for Korean Semantic Role Labeling)

  • 박광현;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.163-166
    • /
    • 2017
  • 딥러닝은 모델이 복잡해질수록 Train 시간이 오래 걸리는 작업이다. Layer Normalization은 Train 시간을 줄이고, layer를 정규화 함으로써 성능을 개선할 수 있는 방법이다. 본 논문에서는 한국어 의미역 결정을 위해 Layer Normalization이 적용 된 Bidirectional LSTM CRF 모델을 제안한다. 실험 결과, Layer Normalization이 적용 된 Bidirectional LSTM CRF 모델은 한국어 의미역 결정 논항 인식 및 분류(AIC)에서 성능을 개선시켰다.

  • PDF

BERT기반 LSTM-CRF 모델을 이용한 한국어 형태소 분석 및 품사 태깅 (Korean Morphological Analysis and Part-Of-Speech Tagging with LSTM-CRF based on BERT)

  • 박천음;이창기;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.34-36
    • /
    • 2019
  • 기존 딥 러닝을 이용한 형태소 분석 및 품사 태깅(Part-Of-Speech tagging)은 feed-forward neural network에 CRF를 결합하는 방법이나 sequence-to-sequence 모델을 이용한 방법 등의 다양한 모델들이 연구되었다. 본 논문에서는 한국어 형태소 분석 및 품사 태깅을 수행하기 위하여 최근 자연어처리 태스크에서 많은 성능 향상을 보이고 있는 BERT를 기반으로 한 음절 단위 LSTM-CRF 모델을 제안한다. BERT는 양방향성을 가진 트랜스포머(transformer) 인코더를 기반으로 언어 모델을 사전 학습한 것이며, 본 논문에서는 한국어 대용량 코퍼스를 어절 단위로 사전 학습한 KorBERT를 사용한다. 실험 결과, 본 논문에서 제안한 모델이 기존 한국어 형태소 분석 및 품사 태깅 연구들 보다 좋은 (세종 코퍼스) F1 98.74%의 성능을 보였다.

  • PDF

CRFs와 Bi-LSTM/CRFs의 비교 분석: 자동 띄어쓰기 관점에서 (CRFs versus Bi-LSTM/CRFs: Automatic Word Spacing Perspective)

  • 윤호;김창현;천민아;박호민;남궁영;최민석;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.189-192
    • /
    • 2018
  • 자동 띄어쓰기란 컴퓨터를 사용하여 띄어쓰기가 수행되어 있지 않은 문장에 대해 띄어쓰기를 수행하는 것이다. 이는 자연언어처리 분야에서 형태소 분석 전에 수행되는 과정으로, 띄어쓰기에 오류가 발생할 경우, 형태소 분석이나 구문 분석 등에 영향을 주어 그 결과의 모호성을 높이기 때문에 매우 중요한 전처리 과정 중 하나이다. 본 논문에서는 기계학습의 방법 중 하나인 CRFs(Conditional Random Fields)를 이용하여 자동 띄어쓰기를 수행하고 심층 학습의 방법 중 하나인 양방향 LSTM/CRFs (Bidirectional Long Short Term Memory/CRFs)를 이용하여 자동 띄어쓰기를 수행한 뒤 각 모델의 성능을 비교하고 분석한다. CRFs 모델이 양방향 LSTM/CRFs모델보다 성능이 약간 더 높은 모습을 보였다. 따라서 소형 기기와 같은 환경에서는 CRF와 같은 모델을 적용하여 모델의 경량화 및 시간복잡도를 개선하는 것이 훨씬 더 효과적인 것으로 생각된다.

  • PDF