• Title/Summary/Keyword: LSTM 언어모델

Search Result 100, Processing Time 0.025 seconds

LSTM based Language Model for Topic-focused Sentence Generation (문서 주제에 따른 문장 생성을 위한 LSTM 기반 언어 학습 모델)

  • Kim, Dahae;Lee, Jee-Hyong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.17-20
    • /
    • 2016
  • 딥러닝 기법이 발달함에 따라 텍스트에 내재된 의미 및 구문을 어떠한 벡터 공간 상에 표현하기 위한 언어 모델이 활발히 연구되어 왔다. 이를 통해 자연어 처리를 기반으로 하는 감성 분석 및 문서 분류, 기계 번역 등의 분야가 진보되었다. 그러나 대부분의 언어 모델들은 텍스트에 나타나는 단어들의 일반적인 패턴을 학습하는 것을 기반으로 하기 때문에, 문서 요약이나 스토리텔링, 의역된 문장 판별 등과 같이 보다 고도화된 자연어의 이해를 필요로 하는 연구들의 경우 주어진 텍스트의 주제 및 의미를 고려하기에 한계점이 있다. 이와 같은 한계점을 고려하기 위하여, 본 연구에서는 기존의 LSTM 모델을 변형하여 문서 주제와 해당 주제에서 단어가 가지는 문맥적인 의미를 단어 벡터 표현에 반영할 수 있는 새로운 언어 학습 모델을 제안하고, 본 제안 모델이 문서의 주제를 고려하여 문장을 자동으로 생성할 수 있음을 보이고자 한다.

  • PDF

Analysis Method Study of Film Text using Word Vectors of Language Model (언어모델의 단어벡터를 이용한 영화 텍스트 분석 기법 연구)

  • Kwangho Ko;Juryeon Paik
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.6
    • /
    • pp.703-708
    • /
    • 2024
  • LSTM, a deep learning technique for building language models, can be easily trained on systems with small computing resources, unlike large language models. In this paper, we propose a convergent technique to train LSTM-based language models on small-scale texts and perform objective semantic and relational analysis on the main topic words of the text using the word vectors of the vocabulary comprising the text. Using the word vectors of a small language model trained on the English script of the 2021 movie "Green Knight" directed by David Lowery as a text, we proposed a technique that can analyze the meaning and relationship of the main topic words. Through the similarity operation of the word vector, the meaning and symbolism of each theme word can be objectively analyzed with the similarity scores between the words. The relationship between each theme word can be intuitively recognized by displaying the dimensionality-reduced two-dimensional word vector. By using a small-scale language model of the LSTM method, we proposed a method to analyze complex texts using word vectors while minimizing the cost of learning.

LSTM Language Model Based Korean Sentence Generation (LSTM 언어모델 기반 한국어 문장 생성)

  • Kim, Yang-hoon;Hwang, Yong-keun;Kang, Tae-gwan;Jung, Kyo-min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.592-601
    • /
    • 2016
  • The recurrent neural network (RNN) is a deep learning model which is suitable to sequential or length-variable data. The Long Short-Term Memory (LSTM) mitigates the vanishing gradient problem of RNNs so that LSTM can maintain the long-term dependency among the constituents of the given input sequence. In this paper, we propose a LSTM based language model which can predict following words of a given incomplete sentence to generate a complete sentence. To evaluate our method, we trained our model using multiple Korean corpora then generated the incomplete part of Korean sentences. The result shows that our language model was able to generate the fluent Korean sentences. We also show that the word based model generated better sentences compared to the other settings.

Mention Detection using Bidirectional LSTM-CRF Model (Bidirectional LSTM-CRF 모델을 이용한 멘션탐지)

  • Park, Cheoneum;Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.224-227
    • /
    • 2015
  • 상호참조해결은 특정 개체에 대해 다르게 표현한 단어들을 서로 연관지어 주며, 이러한 개체에 대해 표현한 단어들을 멘션(mention)이라 하며, 이런 멘션을 찾아내는 것을 멘션탐지(mention detection)라 한다. 멘션은 명사나 명사구를 기반으로 정의되며, 명사구의 경우에는 수식어를 포함하기 때문에 멘션탐지를 순차 데이터 문제(sequence labeling problem)로 정의할 수 있다. 순차 데이터 문제에는 Recurrent Neural Network(RNN) 종류의 모델을 적용할 수 있으며, 모델들은 Long Short-Term Memory(LSTM) RNN, LSTM Recurrent CRF(LSTM-CRF), Bidirectional LSTM-CRF(Bi-LSTM-CRF) 등이 있다. LSTM-RNN은 기존 RNN의 그레디언트 소멸 문제(vanishing gradient problem)를 해결하였으며, LSTM-CRF는 출력 결과에 의존성을 부여하여 순차 데이터 문제에 더욱 최적화 하였다. Bi-LSTM-CRF는 과거입력자질과 미래입력자질을 함께 학습하는 방법으로 최근에 가장 좋은 성능을 보이고 있다. 이에 따라, 본 논문에서는 멘션탐지에 Bi-LSTM-CRF를 적용할 것을 제안하며, 각 딥 러닝 모델들에 대한 비교실험을 보인다.

  • PDF

The Ability of L2 LSTM Language Models to Learn the Filler-Gap Dependency

  • Kim, Euhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.11
    • /
    • pp.27-40
    • /
    • 2020
  • In this paper, we investigate the correlation between the amount of English sentences that Korean English learners (L2ers) are exposed to and their sentence processing patterns by examining what Long Short-Term Memory (LSTM) language models (LMs) can learn about implicit syntactic relationship: that is, the filler-gap dependency. The filler-gap dependency refers to a relationship between a (wh-)filler, which is a wh-phrase like 'what' or 'who' overtly in clause-peripheral position, and its gap in clause-internal position, which is an invisible, empty syntactic position to be filled by the (wh-)filler for proper interpretation. Here to implement L2ers' English learning, we build LSTM LMs that in turn learn a subset of the known restrictions on the filler-gap dependency from English sentences in the L2 corpus that L2ers can potentially encounter in their English learning. Examining LSTM LMs' behaviors on controlled sentences designed with the filler-gap dependency, we show the characteristics of L2ers' sentence processing using the information-theoretic metric of surprisal that quantifies violations of the filler-gap dependency or wh-licensing interaction effects. Furthermore, comparing L2ers' LMs with native speakers' LM in light of processing the filler-gap dependency, we not only note that in their sentence processing both L2ers' LM and native speakers' LM can track abstract syntactic structures involved in the filler-gap dependency, but also show using linear mixed-effects regression models that there exist significant differences between them in processing such a dependency.

Probing Sentence Embeddings in L2 Learners' LSTM Neural Language Models Using Adaptation Learning

  • Kim, Euhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.13-23
    • /
    • 2022
  • In this study we leveraged a probing method to evaluate how a pre-trained L2 LSTM language model represents sentences with relative and coordinate clauses. The probing experiment employed adapted models based on the pre-trained L2 language models to trace the syntactic properties of sentence embedding vector representations. The dataset for probing was automatically generated using several templates related to different sentence structures. To classify the syntactic properties of sentences for each probing task, we measured the adaptation effects of the language models using syntactic priming. We performed linear mixed-effects model analyses to analyze the relation between adaptation effects in a complex statistical manner and reveal how the L2 language models represent syntactic features for English sentences. When the L2 language models were compared with the baseline L1 Gulordava language models, the analogous results were found for each probing task. In addition, it was confirmed that the L2 language models contain syntactic features of relative and coordinate clauses hierarchically in the sentence embedding representations.

Korean Semantic Role Labeling using Backward LSTM CRF (Backward LSTM CRF를 이용한 한국어 의미역 결정)

  • Bae, Jangseong;Lee, Changki;Lim, Soojong
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.194-197
    • /
    • 2015
  • Long Short-term Memory Network(LSTM) 기반 Recurrent Neural Network(RNN)는 순차 데이터를 모델링 할 수 있는 딥 러닝 모델이다. 기존 RNN의 그래디언트 소멸 문제(vanishing gradient problem)를 해결한 LSTM RNN은 멀리 떨어져 있는 이전의 입력 정보를 볼 수 있다는 장점이 있어 음성 인식 및 필기체 인식 등의 분야에서 좋은 성능을 보이고 있다. 또한 LSTM RNN 모델에 의존성(전이 확률)을 추가한 LSTM CRF모델이 자연어처리의 한 분야인 개체명 인식에서 우수한 성능을 보이고 있다. 본 논문에서는 한국어 문장의 지배소가 문장 후위에 나타나는 점에 착안하여 Backward 방식의 LSTM CRF 모델을 제안하고 이를 한국어 의미역 결정에 적용하여 기존 연구보다 더 높은 성능을 얻을 수 있음을 보인다.

  • PDF

Layer Normalized LSTM CRFs for Korean Semantic Role Labeling (Layer Normalized LSTM CRF를 이용한 한국어 의미역 결정)

  • Park, Kwang-Hyeon;Na, Seung-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.163-166
    • /
    • 2017
  • 딥러닝은 모델이 복잡해질수록 Train 시간이 오래 걸리는 작업이다. Layer Normalization은 Train 시간을 줄이고, layer를 정규화 함으로써 성능을 개선할 수 있는 방법이다. 본 논문에서는 한국어 의미역 결정을 위해 Layer Normalization이 적용 된 Bidirectional LSTM CRF 모델을 제안한다. 실험 결과, Layer Normalization이 적용 된 Bidirectional LSTM CRF 모델은 한국어 의미역 결정 논항 인식 및 분류(AIC)에서 성능을 개선시켰다.

  • PDF

Korean Morphological Analysis and Part-Of-Speech Tagging with LSTM-CRF based on BERT (BERT기반 LSTM-CRF 모델을 이용한 한국어 형태소 분석 및 품사 태깅)

  • Park, Cheoneum;Lee, Changki;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.34-36
    • /
    • 2019
  • 기존 딥 러닝을 이용한 형태소 분석 및 품사 태깅(Part-Of-Speech tagging)은 feed-forward neural network에 CRF를 결합하는 방법이나 sequence-to-sequence 모델을 이용한 방법 등의 다양한 모델들이 연구되었다. 본 논문에서는 한국어 형태소 분석 및 품사 태깅을 수행하기 위하여 최근 자연어처리 태스크에서 많은 성능 향상을 보이고 있는 BERT를 기반으로 한 음절 단위 LSTM-CRF 모델을 제안한다. BERT는 양방향성을 가진 트랜스포머(transformer) 인코더를 기반으로 언어 모델을 사전 학습한 것이며, 본 논문에서는 한국어 대용량 코퍼스를 어절 단위로 사전 학습한 KorBERT를 사용한다. 실험 결과, 본 논문에서 제안한 모델이 기존 한국어 형태소 분석 및 품사 태깅 연구들 보다 좋은 (세종 코퍼스) F1 98.74%의 성능을 보였다.

  • PDF

CRFs versus Bi-LSTM/CRFs: Automatic Word Spacing Perspective (CRFs와 Bi-LSTM/CRFs의 비교 분석: 자동 띄어쓰기 관점에서)

  • Yoon, Ho;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-min;Namgoong, Young;Choi, Minseok;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.189-192
    • /
    • 2018
  • 자동 띄어쓰기란 컴퓨터를 사용하여 띄어쓰기가 수행되어 있지 않은 문장에 대해 띄어쓰기를 수행하는 것이다. 이는 자연언어처리 분야에서 형태소 분석 전에 수행되는 과정으로, 띄어쓰기에 오류가 발생할 경우, 형태소 분석이나 구문 분석 등에 영향을 주어 그 결과의 모호성을 높이기 때문에 매우 중요한 전처리 과정 중 하나이다. 본 논문에서는 기계학습의 방법 중 하나인 CRFs(Conditional Random Fields)를 이용하여 자동 띄어쓰기를 수행하고 심층 학습의 방법 중 하나인 양방향 LSTM/CRFs (Bidirectional Long Short Term Memory/CRFs)를 이용하여 자동 띄어쓰기를 수행한 뒤 각 모델의 성능을 비교하고 분석한다. CRFs 모델이 양방향 LSTM/CRFs모델보다 성능이 약간 더 높은 모습을 보였다. 따라서 소형 기기와 같은 환경에서는 CRF와 같은 모델을 적용하여 모델의 경량화 및 시간복잡도를 개선하는 것이 훨씬 더 효과적인 것으로 생각된다.

  • PDF