• 제목/요약/키워드: LSTM(:Long short term memory)

검색결과 523건 처리시간 0.029초

LSTM 순환 신경망을 이용한 초음파 도플러 신호의 음성 패러미터 추정 (Estimating speech parameters for ultrasonic Doppler signal using LSTM recurrent neural networks)

  • 주형길;이기승
    • 한국음향학회지
    • /
    • 제38권4호
    • /
    • pp.433-441
    • /
    • 2019
  • 본 논문에서는 입 주변에 방사한 초음파 신호가 반사되어 돌아올 때 발생하는 초음파 도플러 신호를 LSTM(Long Short Term Memory) 순환 신경망 (Recurrent Neural Networks, RNN)을 이용해 음성 패러미터를 추정하는 방법을 소개하고 다층 퍼셉트론 (Multi-Layer Perceptrons, MLP) 신경망을 이용한 방법과 성능 비교를 하였다. 본 논문에서는 LSTM 순환 신경망을 이용해 초음파 도플러 신호로부터 음성 신호의 푸리에 변환 계수를 추정하였다. LSTM 순환 신경망을 학습하기 위한 입력 및 기준값으로 초음파 도플러 신호와 음성 신호로부터 각각 추출된 멜 주파수 대역별 에너지 로그값과 푸리에 변환 계수가 사용되었다. 테스트 데이터를 이용한 실험을 통해 LSTM 순환 신경망과 MLP의 성능을 평가, 비교하였고 척도로는 평균 제곱근 오차(Root Mean Squared Error, RMSE)가 사용되었다.각 실험의 RMSE는 각각 0.5810, 0.7380로 나타났다. 약 0.1570 차이로 LSTM 순환 신경망을 이용한 방법의 성능 우세한 것으로 확인되었다.

Attention-long short term memory 기반의 화자 임베딩과 I-vector를 결합한 원거리 및 잡음 환경에서의 화자 검증 알고리즘 (Speaker verification system combining attention-long short term memory based speaker embedding and I-vector in far-field and noisy environments)

  • 배아라;김우일
    • 한국음향학회지
    • /
    • 제39권2호
    • /
    • pp.137-142
    • /
    • 2020
  • 문장 종속 짧은 발화에서 문장 독립 긴 발화까지 다양한 환경에서 I-vector 특징에 기반을 둔 많은 연구가 수행되었다. 본 논문에서는 원거리 잡음 환경에서 녹음한 데이터에서 Probabilistic Linear Discriminant Analysis(PLDA)를 적용한 I-vector와 주의 집중 기법을 접목한 Long Short Term Memory(LSTM) 기반의 화자 임베딩을 추출하여 결합한 화자 검증 알고리즘을 소개한다. LSTM 모델의 Equal Error Rate(EER)이 15.52 %, Attention-LSTM 모델이 8.46 %로 7.06 % 성능이 향상되었다. 이로써 본 논문에서 제안한 기법이 임베딩을 휴리스틱 하게 정의하여 사용하는 기존 추출방법의 문제점을 해결할 수 있는 것을 확인하였다. PLDA를 적용한 I-vector의 EER이 6.18 %로 결합 전 가장 좋은 성능을 보였다. Attention-LSTM 기반 임베딩과 결합하였을 때 EER이 2.57 %로 기존보다 3.61 % 감소하여 상대적으로 58.41 % 성능이 향상되었다.

Long Short Term Memory based Political Polarity Analysis in Cyber Public Sphere

  • Kang, Hyeon;Kang, Dae-Ki
    • International Journal of Advanced Culture Technology
    • /
    • 제5권4호
    • /
    • pp.57-62
    • /
    • 2017
  • In this paper, we applied long short term memory(LSTM) for classifying political polarity in cyber public sphere. The data collected from the cyber public sphere is transformed into word corpus data through word embedding. Based on this word corpus data, we train recurrent neural network (RNN) which is connected by LSTM's. Softmax function is applied at the output of the RNN. We conducted our proposed system to obtain experimental results, and we will enhance our proposed system by refining LSTM in our system.

Multi-layered attentional peephole convolutional LSTM for abstractive text summarization

  • Rahman, Md. Motiur;Siddiqui, Fazlul Hasan
    • ETRI Journal
    • /
    • 제43권2호
    • /
    • pp.288-298
    • /
    • 2021
  • Abstractive text summarization is a process of making a summary of a given text by paraphrasing the facts of the text while keeping the meaning intact. The manmade summary generation process is laborious and time-consuming. We present here a summary generation model that is based on multilayered attentional peephole convolutional long short-term memory (MAPCoL; LSTM) in order to extract abstractive summaries of large text in an automated manner. We added the concept of attention in a peephole convolutional LSTM to improve the overall quality of a summary by giving weights to important parts of the source text during training. We evaluated the performance with regard to semantic coherence of our MAPCoL model over a popular dataset named CNN/Daily Mail, and found that MAPCoL outperformed other traditional LSTM-based models. We found improvements in the performance of MAPCoL in different internal settings when compared to state-of-the-art models of abstractive text summarization.

A Delta- and Attention-based Long Short-Term Memory (LSTM) Architecture model for Rainfall-runoff Modeling

  • Ahn, Kuk-Hyun;Yoon, Sunghyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.35-35
    • /
    • 2022
  • 최근에 딥 러닝(Deep learning) 기반의 많은 방법들이 수문학적 모형 및 예측에서 의미있는 결과를 보여주고 있지만 더 많은 연구가 요구되고 있다. 본 연구에서는 수자원의 가장 대표적인 모델링 구조인 강우유출의 관계의 규명에 대한 모형을 Long Short-Term Memory (LSTM) 기반의 변형 된 방법으로 제시하고자 한다. 구체적으로 본 연구에서는 반응변수인 유출량에 대한 직접적인 고려가 아니라 그의 1차 도함수 (First derivative)로 정의되는 Delta기반으로 모형을 구축하였다. 또한, Attention 메카니즘 기반의 모형을 사용함으로써 강우유출의 관계의 규명에 있어 정확성을 향상시키고자 하였다. 마지막으로 확률 기반의 예측를 생성하고 이에 대한 불확실성의 고려를 위하여 Denisty 기반의 모형을 포함시켰고 이를 통하여 Epistemic uncertainty와 Aleatory uncertainty에 대한 상대적 정량화를 수행하였다. 본 연구에서 제시되는 모형의 효용성 및 적용성을 평가하기 위하여 미국 전역에 위치하는 총 507개의 유역의 일별 데이터를 기반으로 모형을 평가하였다. 결과적으로 본 연구에서 제시한 모형이 기존의 대표적인 딥 러닝 기반의 모형인 LSTM 모형과 비교하였을 때 높은 정확성뿐만 아니라 불확실성의 표현과 정량화에 대한 유용한 것으로 확인되었다.

  • PDF

Fuel Consumption Prediction and Life Cycle History Management System Using Historical Data of Agricultural Machinery

  • Jung Seung Lee;Soo Kyung Kim
    • Journal of Information Technology Applications and Management
    • /
    • 제29권5호
    • /
    • pp.27-37
    • /
    • 2022
  • This study intends to link agricultural machine history data with related organizations or collect them through IoT sensors, receive input from agricultural machine users and managers, and analyze them through AI algorithms. Through this, the goal is to track and manage the history data throughout all stages of production, purchase, operation, and disposal of agricultural machinery. First, LSTM (Long Short-Term Memory) is used to estimate oil consumption and recommend maintenance from historical data of agricultural machines such as tractors and combines, and C-LSTM (Convolution Long Short-Term Memory) is used to diagnose and determine failures. Memory) to build a deep learning algorithm. Second, in order to collect historical data of agricultural machinery, IoT sensors including GPS module, gyro sensor, acceleration sensor, and temperature and humidity sensor are attached to agricultural machinery to automatically collect data. Third, event-type data such as agricultural machine production, purchase, and disposal are automatically collected from related organizations to design an interface that can integrate the entire life cycle history data and collect data through this.

LSTM을 활용한 고위험성 조류인플루엔자(HPAI) 확산 경로 예측 (Prediction of Highy Pathogenic Avian Influenza(HPAI) Diffusion Path Using LSTM)

  • 최대우;이원빈;송유한;강태훈;한예지
    • 한국빅데이터학회지
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2020
  • 이 연구는 2018년도 정부(농림축산식품부)의 재원으로 농림식품기술기획평가원 지원을 받아 수행된 연구이다. 최근 시계열 및 텍스트 마이닝에서 활발히 사용되는 모델은 딥러닝(Deep Learning) 모델 구조를 활용한 LSTM(Long Short-Term Memory models) 모델이다. LSTM 모델은 RNN의 BPTT(Backpropagation Through Time) 과정에서 발생하는 Long-Term Dependency Problem을 해결하기 위해 등장한 모델이다. LSTM 모델은 가변적인 Sequence data를 활용하여 예측하는 문제를 굉장히 잘 해결했고, 지금도 널리 사용되고 있다. 본 논문 연구에서는 KT가 제공하는 CDR(Call Detailed Record) 데이터를 활용하여 바이러스와 밀접한 관계가 있을 것으로 예측되는 사람의 이동 경로를 파악하였다. 해당 사람의 경로를 활용하여 LSTM 모델을 학습시켜 이동 경로를 예측한 결과를 소개한다. 본 연구 결과를 활용하여 HPAI가 전파되는 경로를 예측하여 방역에 중점을 둘 경로 또는 지역을 선정해 HPAI 확산을 줄이는 데 이용될 수 있을 것이다.

An Approach for Stock Price Forecast using Long Short Term Memory

  • K.A.Surya Rajeswar;Pon Ramalingam;Sudalaimuthu.T
    • International Journal of Computer Science & Network Security
    • /
    • 제23권4호
    • /
    • pp.166-171
    • /
    • 2023
  • The Stock price analysis is an increasing concern in a financial time series. The purpose of the study is to analyze the price parameters of date, high, low, and news feed about the stock exchange price. Long short term memory (LSTM) is a cutting-edge technology used for predicting the data based on time series. LSTM performs well in executing large sequence of data. This paper presents the Long Short Term Memory Model has used to analyze the stock price ranges of 10 days and 20 days by exponential moving average. The proposed approach gives better performance using technical indicators of stock price with an accuracy of 82.6% and cross entropy of 71%.

An accident diagnosis algorithm using long short-term memory

  • Yang, Jaemin;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • 제50권4호
    • /
    • pp.582-588
    • /
    • 2018
  • Accident diagnosis is one of the complex tasks for nuclear power plant (NPP) operators. In abnormal or emergency situations, the diagnostic activity of the NPP states is burdensome though necessary. Numerous computer-based methods and operator support systems have been suggested to address this problem. Among them, the recurrent neural network (RNN) has performed well at analyzing time series data. This study proposes an algorithm for accident diagnosis using long short-term memory (LSTM), which is a kind of RNN, which improves the limitation for time reflection. The algorithm consists of preprocessing, the LSTM network, and postprocessing. In the LSTM-based algorithm, preprocessed input variables are calculated to output the accident diagnosis results. The outputs are also postprocessed using softmax to determine the ranking of accident diagnosis results with probabilities. This algorithm was trained using a compact nuclear simulator for several accidents: a loss of coolant accident, a steam generator tube rupture, and a main steam line break. The trained algorithm was also tested to demonstrate the feasibility of diagnosing NPP accidents.

Long Short-Term Memory를 이용한 부산항 조위 예측 (Tidal Level Prediction of Busan Port using Long Short-Term Memory)

  • 김해림;전용호;박재형;윤한삼
    • 해양환경안전학회지
    • /
    • 제28권4호
    • /
    • pp.469-476
    • /
    • 2022
  • 본 연구는 조위 관측자료를 이용하여 부산항에서의 장기 조위 자료를 생성하는 Long Short-Term Memory (LSTM)으로 구현된 순환신경망 모델을 개발하였다. 국립해양조사원의 부산 신항과 통영에서 관측된 조위 자료를 모델 입력 자료로 사용하여 부산항의 조위를 예측하였다. 모델에 대하여 2019년 1월 한 달의 학습을 수행하였으며, 이후 2019년 2월에서 2020년 1월까지 1년에 대하여 정확도를 계산하였다. 구축된 모델은 부산 신항과 통영의 조위 시계열을 함께 입력한 경우에 상관계수 0.997 및 평균 제곱근 오차 2.69 m로 가장 성능이 높았다. 본 연구 결과를 바탕으로 딥러닝 순환신경망 모델을 이용하여 임의 항만의 장기 조위 자료 예측이 가능함을 알 수 있었다.