• Title/Summary/Keyword: LSMAP

Search Result 4, Processing Time 0.016 seconds

Comparison of Sediment Disaster Risk Depending on Bedrock using LSMAP (LSMAP을 활용한 기반암별 토사재해 위험도 비교)

  • Choi, Won-il;Choi, Eun-hwa;Jeon, Seong-kon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.51-62
    • /
    • 2017
  • For the purpose of the study, of the 76 areas subject to preliminary concentrated management on sediment disaster in the downtown area, 9 areas were selected as research areas. They were classified into three stratified rock areas (Gyeongsan City, Goheung-gun and Daegu Metropolitan City), three igneous rock areas (Daejeon City, Sejong Special Self-Governing City and Wonju City) and three metamorphic rock areas (Namyangju City, Uiwang City and Inje District) according to the characteristics of the bedrock in the research areas. As for the 9 areas, analyses were conducted based on tests required to calculate soil characteristics, a predictive model for root adhesive power, loading of trees and on-the-spot research. As for a rainfall scenario (rainfall intensity), the probability of rainfall was applied as offered by APEC Climate Center (APCC) in Busan. As for the prediction of landslide risks in the 9 areas, TRIGRS and LSMAP were applied. As a result of TRIGRIS prediction, the risk rate was recorded 30.45% in stratified rock areas, 41.03% in igneous rock areas and 45.04% in metamorphic rock areas on average. As a result of LSMAP prediction based on root cohesion and the weight of trees according to crown density, it turned out to a 1.34% risk rate in the stratified rock areas, 2.76% in the igneous rock areas and 1.64% in the metamorphic rock areas. Analysis through LSMAP was considered to be relatively local predictive rather than analysis using TRIGRS.

Comparison of Prediction Models for Identification of Areas at Risk of Landslides due to Earthquake and Rainfall (지진 및 강우로 인한 산사태 발생 위험지 예측 모델 비교)

  • Jeon, Seongkon;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.6
    • /
    • pp.15-22
    • /
    • 2019
  • In this study, the hazard areas are identified by using the Newmark displacement model, which is a predictive model for identifying the areas at risk of landslide triggered by earthquakes, based on the results of field survey and laboratory test, and literature data. The Newmark displacement model mainly utilizes earthquake and slope related data, and the safety of slope stability derived from LSMAP, which is a landslide prediction program. Backyang Mt. in Busan where the landslide has already occurred, was chosen as the study area of this research. As a result of this study, the area of landslide prone zone identified by using the Newmark displacement model without earthquake factor is about 1.15 times larger than that identified by using LSMAP.

Analysis of Hazard Areas by Sediment Disaster Prediction Techniques Based on Ground Characteristics (지반특성을 고려한 토사재해 예측 기법별 위험지 분석)

  • Choi, Wonil;Choi, Eunhwa;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.12
    • /
    • pp.47-57
    • /
    • 2017
  • In this study, a predictive analysis was conducted on sediment disaster hazard area by selecting six research areas (Chuncheon, Seongnam, Sejong, Daejeon, Miryang and Busan) among the urban sediment disaster preliminary focus management area. The models that were used in the analysis were the existing models (SINMAP and TRIGRS) that are commonly used in predicting sediment disasters as well as the program developed through this study (LSMAP). A comparative analysis was carried out on the results as a means to review the applicability of the developed model. The parameters used in the predictions of sediment disaster hazard area were largely classified into topographic, soil, forest physiognomy and rainfall characteristics. A predictive analysis was carried out using each of the models, and it was found that the analysis using SINMAP, compared to LSMAP and TRIGRS, resulted in a prediction of a wider hazard zone. These results are considered to be due to the difference in analysis parameters applied to each model. In addition, a comparison between LSMAP, where the forest physiognomy characteristics were taken into account, and TRIGRS showed that similar tendencies were observed within a range of -0.04~2.72% for the predicted hazard area. This suggests that the forest physiognomy characteristics of mountain areas have diverse impacts on the stability of slopes, and serve as an important parameter in predicting sediment disaster hazard area.

Comparison of Analysis Model on Soil Disaster According to Soil Characteristics (지반특성에 따른 토사재해 해석 모델 비교)

  • Choi, Wonil;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.6
    • /
    • pp.21-30
    • /
    • 2017
  • This study analyzed the ground characteristics region by designating 3 research areas, Anrim-dong in Chungju City, Busa-dong in Daejeon Metropolitan City and Sinan-dong in Andong City out of the areas subject to concentrated management to prepare for sediment disaster in downtown areas. The correlation between ground characteristics were observed by using characteristics (crown density, root cohesion, rainfall characteristics, soil characteristics) and the risk areas were predicted through sediment disaster prediction modeling. Landslide MAPping (LSMAP), Stability Index MAPping (SINMAP) and Landslide Hazard MAP (LHMAP) were used for the comparative analysis of the hazard prediction model for sediment disaster. As a result of predicting the sediment disaster danger, in case of SINMAP which was generally used, excessive range was predicted as a hazardous area and in case of the Korea Forest Service's landslide hazard map (LHMAP), the smallest prediction area was assessed. LSMAP predicted a medium range of SINMAP and LHMAP as hazardous area. The difference of the prediction results is that the analysis parameters of LSMAP is more diverse and engineering than two comparative models, and it is found that more precise prediction is possible.