• 제목/요약/키워드: LSB(Laser Slit Beam)

Search Result 5, Processing Time 0.026 seconds

Development of docking system using laste slit beam (LSB를 이용한 Docking System 개발)

  • 김선호;박경택;최성락;변성태;이영석
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.309-314
    • /
    • 1999
  • The major movement block of the containers is range between apron and designation points on yard in container terminal. The yard tractor operated by human takes charge of it's movement in conventional container terminal. In unmanned container terminal, UCT(unmanned container transporter) has charge of the yard tractor's role and the navigation path is ordered from upper level control system. The unmanned container terminal facilities must have docking system that guided landing line to have high speed travelling and precision positioning in unmanned container terminal. The general method for docking uses the vision system with CCD camera, infra red, and laser. This paper describes the investigation for the developed docking method in view point of merit and demerit and introduces 속 result of developing the docking system with LSB(laser slit beam).

  • PDF

Detection of Moving Position of AGV Using Rotating LSB(Laser Slit Beam) (회전 레이져 슬릿 빔을 이용한 AGV 이동위치 검출)

  • Kim, Seon-Ho;Park, Gyeong-Taek;Park, Geon-Guk;An, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.137-144
    • /
    • 2001
  • The major movement blocks of the container are the range between the apron and the designation points on yard in container terminals. The yard tractor drived by operator takes charge of it's movement in conventional container terminals. In automated container terminal, AGV(automatic guided vehicle) takes charge of a yard tractor's role and information of navigation path are ordered from upper control system. The automated container terminal facilities must have the docking system that guides landing zinc to execute high speed travelling and precision positioning. This paper describes the new docking method with the rotating LSB(laser slit beam) generator and two pair of photo receiver. The LSB generator is installed on the fixed ground and the photo receiver is implemented on the moving vehicle such as AGV. The proposed docking system is implemented to confirm it's function and accuracy. The accuracy of measured moving position is represented in ±5mm at 1 data sampling.

  • PDF

Detection of AGV's position and orientation using laser slit beam (회전 Laser 슬릿 빔을 이용한 AGV의 위치 및 자세의 검출)

  • 박건국;김선호;박경택;안중환
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.219-225
    • /
    • 2000
  • The major movement block of the containers have range between apron and designation points on yard in container terminal. The yard tractor operated by human takes charge of its movement in conventional container terminal. In automated container terminal, AGV(Automated Guided Vehicle) has charge of the yard tractor's role and the navigation path is ordered from upper level control system. The automated container terminal facilities must have the docking system to guide landing line to have high speed travelling and precision positioning. The general method for docking system uses the vision system with CCD camera, infra red, and laser. This paper describes the detection of AGV's position and orientation using laser slit beam to develop docking system.

  • PDF

Guidance of Mobile Robot for Inspection of Pipe (파이프 내부검사를 위한 이동로봇의 유도방법)

  • 정규원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.480-485
    • /
    • 2002
  • The purpose of this paper is the development of guidance algorithm for a mobile robot which is used to acquire the position and state information of the pipe defects such as crack, damage and through hole. The data used for the algorithm is the range data obtained by the range sensor which is based on an optical triangulation method. The sensor, which consists of a laser slit beam and a CCD camera, measures the 3D profile of the pipe's inner surface. After setting the range sensor on the robot, the robot is put into a pipe. While the camera and the LSB sensor part is rotated about the robot axis, a laser slit beam (LSB) is projected onto the inner surface of the pipe and a CCD camera captures the image. From the images the range data is obtained with respect to the sensor coordinate through a series of image processing and applying the sensor matrix. After the data is transformed into the robot coordinate, the position and orientation of the robot should be obtained in order to guide the robot. In addition, analyzing the data, 3D shape of the pipe is constructed and the numerical data for the defects of the pipe can be found. These data will be used for pipe maintenance and service.

  • PDF

Precision enhancement for a CCD/LSB type shape measuring system (CCD/LSB 방식의 형상측정시스템의 정밀도 향상 방법)

  • 유주상;정규원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.137-142
    • /
    • 2001
  • Since recent production system becomes that of the small quantity, large volume with high quality production, accurate and high speed inspection system is required. In such situation, noncontact 3D measurement system which utilized CCD cameras is useful technique in terms of system cost, speed of data acquisition, measuring accuracy and application. However, it has low accuracy compared with contact 3D measurement system because of the camera distortion, non uniformity of laser distribution and so on. For those reasons, in this paper precision enhancement method is studied considering radial camera distortion, and laser distribution. A distortion correction method is applied even to the standard lens. The laser slit beam trajectory is determined by 3 method: based of the Gaussian function signal approximation, the median method, the center of gravity method and the peak point of the Gaussian function method.

  • PDF