• 제목/요약/키워드: LS-SVM

검색결과 51건 처리시간 0.021초

Reduced LS-SVM을 이용한 지역난방 동절기 공동주택 난방부하의 모델링 (Modeling of Winter Time Apartment Heating Load in District Heating System Using Reduced LS-SVM)

  • 박영칠
    • 설비공학논문집
    • /
    • 제27권6호
    • /
    • pp.283-292
    • /
    • 2015
  • A model of apartment heating load in a district heating system could be useful in the management and utilization of energy resources, since it could predict energy usage and so could assist in the efficient use of energy resources. The heating load in a district heating system varies in a highly nonlinear manner and is subject to many different factors, such as heating area, number of people living in that complex, and ambient temperature. Thus there are few published papers with accurate models of heating load, especially in domestic literature. This work is concerned with the modeling of apartment heating load in a district heating system in winter, using the reduced least square support vector machine (LS-SVM), and with the purpose of using the model to predict heating energy usage in domestic city area. We collected 23,856 pieces of data on heating energy usage over a 12-week period in winter, from 12 heat exchangers in five apartments. Half of the collected data were used to construct the heating load model, and the other half were used to test the model's accuracy. The model was able to predict the heating energy usage pattern rather accurately. It could also estimate the usage of heating energy within of mean absolute percentage error. This implies that the model prediction accuracy needs to be improved further, but it still could be considered as an acceptable model if we consider the nonlinearity and uncertainty of apartment heating energy usage in a district heating system.

Hybrid Fuzzy Least Squares Support Vector Machine Regression for Crisp Input and Fuzzy Output

  • Shim, Joo-Yong;Seok, Kyung-Ha;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제17권2호
    • /
    • pp.141-151
    • /
    • 2010
  • Hybrid fuzzy regression analysis is used for integrating randomness and fuzziness into a regression model. Least squares support vector machine(LS-SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate hybrid fuzzy linear and nonlinear regression models with crisp inputs and fuzzy output using weighted fuzzy arithmetic(WFA) and LS-SVM. LS-SVM allows us to perform fuzzy nonlinear regression analysis by constructing a fuzzy linear regression function in a high dimensional feature space. The proposed method is not computationally expensive since its solution is obtained from a simple linear equation system. In particular, this method is a very attractive approach to modeling nonlinear data, and is nonparametric method in the sense that we do not have to assume the underlying model function for fuzzy nonlinear regression model with crisp inputs and fuzzy output. Experimental results are then presented which indicate the performance of this method.

LS-SVM을 이용한 TFT-LCD 패널 내의 결함 검사 방법 (A Defect Inspection Method in TFT-LCD Panel Using LS-SVM)

  • 최호형;이건희;김자근;주영복;최병재;박길흠;윤병주
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.852-859
    • /
    • 2009
  • TFT-LCD 자동 검사 시스템에서 결함 검출을 위한 영상은 라인 스캔 카메라(line scan camera)나 에어리어 스캔 카메라 (area scan camera)에 의해서 획득하게 된다. 그러나 임펄스 잡음과 가우시안 잡음, CCD 혹은 CMOS 센서의 한계, 조명등의 영향으로 열화된 영상이 획득되며, 한도성 결함 영역을 인간의 육안으로 구분하기 어렵게 된다. 본 논문에서는 효율적인 결함 검출을 위해 특징 추출 방법과 결함 검출 방법을 제안한다. 특징 벡터로 웨버의 법칙을 이용한 결함 영역과 주변 배경 영역의 평균 밝기 차와 주변 배경 영역의 밝기 변화를 이용한 표준편차를 이용하며, 결함 영역 검출를 위해 추출된 특징 벡터를 이용하여 비선형 SVM을 적용한다. 실험 결과는 제안한 방법이 다른 방법들 보다 성능이 우수함을 보여준다.

Reliability-based combined high and low cycle fatigue analysis of turbine blade using adaptive least squares support vector machines

  • Ma, Juan;Yue, Peng;Du, Wenyi;Dai, Changping;Wriggers, Peter
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.293-304
    • /
    • 2022
  • In this work, a novel reliability approach for combined high and low cycle fatigue (CCF) estimation is developed by combining active learning strategy with least squares support vector machines (LS-SVM) (named as ALS-SVM) surrogate model to address the multi-resources uncertainties, including working loads, material properties and model itself. Initially, a new active learner function combining LS-SVM approach with Monte Carlo simulation (MCS) is presented to improve computational efficiency with fewer calls to the performance function. To consider the uncertainty of surrogate model at candidate sample points, the learning function employs k-fold cross validation method and introduces the predicted variance to sequentially select sampling. Following that, low cycle fatigue (LCF) loads and high cycle fatigue (HCF) loads are firstly estimated based on the training samples extracted from finite element (FE) simulations, and their simulated responses together with the sample points of model parameters in Coffin-Manson formula are selected as the MC samples to establish ALS-SVM model. In this analysis, the MC samples are substituted to predict the CCF reliability of turbine blades by using the built ALS-SVM model. Through the comparison of the two approaches, it is indicated that the reliability model by linear cumulative damage rule provides a non-conservative result compared with that by the proposed one. In addition, the results demonstrate that ALS-SVM is an effective analysis method holding high computational efficiency with small training samples to gain accurate fatigue reliability.

APPROXIMATE SOLUTIONS TO ONE-DIMENSIONAL BACKWARD HEAT CONDUCTION PROBLEM USING LEAST SQUARES SUPPORT VECTOR MACHINES

  • Wu, Ziku;Li, Fule;Kwak, Do Young
    • 충청수학회지
    • /
    • 제29권4호
    • /
    • pp.631-642
    • /
    • 2016
  • This article deals with one-dimension backward heat conduction problem (BHCP). A new approach based on least squares support vector machines (LS-SVM) is proposed for obtaining their approximate solutions. The approximate solution is presented in closed form by means of LS-SVM, whose parameters are adjusted to minimize an appropriate error function. The approximate solution consists of two parts. The first part is a known function that satisfies initial and boundary conditions. The other is a product of two terms. One term is known function which has zero boundary and initial conditions, another term is unknown which is related to kernel functions. This method has been successfully tested on practical examples and has yielded higher accuracy and stable solutions.

APEX 기반 침입 탐지 시스템 개발에 관한 연구 : (주)제이드 솔류션과 공동 연구 (A Study on Developing Intrusion Detection System Using APEX : A Collaborative Research Project with Jade Solution Company)

  • 김병주
    • 한국정보전자통신기술학회논문지
    • /
    • 제10권1호
    • /
    • pp.38-45
    • /
    • 2017
  • 정보 처리 기술의 컴퓨터 및 네트워크 의존도가 심화됨에 따라 컴퓨터 및 네트워크에 대한 침입 사례가 갈수록 증가하고 있다. 시스템 및 네트워크의 침입을 방지하기 위하여 호스트와 네트워크 기반 침입차단시스템(방화벽 등)이 개발되었지만 기존의 규칙 기반의 침입차단시스템만으로는 보안 관리에 많은 어려움이 있다. 이러한 이유로 인해 시스템 및 네트워크 자원에 대한 침입을 실시간으로 탐지하고 이에 대처하는 침입탐지시스템 개발에 대한 요구가 증가하고 있다. 본 논문에서는 비선형 자료에도 적용 가능하며 수렴성이 보장된 실시간 특징 추출 방법으로 APEX 알고리즘과 점증적 LS-SVM 분류기를 결합한 실시간 침입탐지 시스템을 개발하였다. 일반적으로 실시간 처리 방식은 메모리의 효율성이 좋고 학습 자료의 추가를 허용하는 장점이 있지만 일괄처리 방식에 비해 정확도가 떨어지는 단점이 있다. 따라서 제안한 시스템은 정확도 면에서도 일괄 처리 방식과 비슷한 성능을 나타내고 있어 상용화가 가능한 시스템이다.

다중 LS-SVM을 이용한 중국유학생들의 쇼핑몰 고객만족도 분석 (An Analysis of customer satisfaction for shopping mall using multi LS-SVM : Focused on the Perception of Chinese Students in Korea)

  • 피수영;박혜정;권영직
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권6호
    • /
    • pp.81-89
    • /
    • 2013
  • 현재 인터넷 쇼핑은 중국인들의 일반적인 소비채널이 되고 있으며 앞으로도 지속적으로 성장할 가능성이 매우 높다. 중국의 인터넷 쇼핑몰 시장이 급속히 성장하고 있음에도 불구하고 중국인의 고객만족도에 맞는 인터넷 쇼핑몰은 많지 않다. 한국의 인터넷 쇼핑몰 업체들이 쇼핑몰에 대한 품질평가와 고객만족도를 분석하여 중국 유학생들의 성향에 맞는 쇼핑몰을 구축한다면 국제 경쟁력을 강화시킬 수 있을 것이다. 본 논문에서는 중국 유학생들과 한국 대학생들의 인터넷 쇼핑몰 고객만족도에 대해 비교 분석하여 어떠한 차이가 있는지 분석하고 전역적 최적의 해를 구하는 다중 LS-SVM을 이용하여 중국 유학생들의 고객만족도 모형을 분석한다. 중국 유학생들의 고객만족도 분석은 한국 인터넷 쇼핑몰 업체들에게 유익한 정보로서 활용될 수 있을 뿐 아니라 국제 경쟁력을 강화할 수 있는 방안이 될 것이다.

First Principle을 결합한 최소제곱 Support Vector Machine의 예측 능력 (Prediction Performance of Hybrid Least Square Support Vector Machine with First Principle Knowledge)

  • 김병주;심주용;황창하;김일곤
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권7_8호
    • /
    • pp.744-751
    • /
    • 2003
  • 본 논문에서는 최근 뛰어난 예측력으로 각광받는 최소제곱 Support Vector Machine(Least Square Support Vector Machine: LS-SVM)과 First Principle(FP)을 결합한 하이브리드 최소제곱ㆍSupport Vector Machine 모델, HLS-SVM(Hybrid Least Square-Super Vector Machine)을 제안한다. 제안한 모델인 하이브리드 최소제곱 Support Vector Machine을 기존의 방법인 하이브리드 신경망(Hybrid Neural Network:HNN), 비선형 칼만필터와 하이브리드 신경망을 결합한 HNN-EKF (Hybrid Neural Network with Extended Kalman Filter) 모델과 비교해 보았다. HLS-SVM 모델은 학습 및 validation 과정에서는 HNN-EKF와 근사한 성능을 보였고, HNN 보다는 우수한 결과를 보였고, 일반화 성능에서는 HNN-EKF에 비해 3배, HNN보다 100배정도 우수한 결과를 보였다.

A New Lane Departure Warning System using a Support Vector Machine Classifier and a Fuzzy System

  • Kim, Sam-Yong;Oh, Se-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.110.3-110
    • /
    • 2002
  • $\textbullet$ Lane detection by TFALDA $\textbullet$ SVM for large scale data and multiclass classification problem $\textbullet$ TLC Classification $\textbullet$ Lateral offset estimation by IPT $\textbullet$ Lane departure warning by a fuzzy system $\textbullet$ Experimental results by HiLS $\textbullet$ Conclusion

  • PDF

An Optimization Algorithm with Novel Flexible Grid: Applications to Parameter Decision in LS-SVM

  • Gao, Weishang;Shao, Cheng;Gao, Qin
    • Journal of Computing Science and Engineering
    • /
    • 제9권2호
    • /
    • pp.39-50
    • /
    • 2015
  • Genetic algorithm (GA) and particle swarm optimization (PSO) are two excellent approaches to multimodal optimization problems. However, slow convergence or premature convergence readily occurs because of inappropriate and inflexible evolution. In this paper, a novel optimization algorithm with a flexible grid optimization (FGO) is suggested to provide adaptive trade-off between exploration and exploitation according to the specific objective function. Meanwhile, a uniform agents array with adaptive scale is distributed on the gird to speed up the calculation. In addition, a dominance centroid and a fitness center are proposed to efficiently determine the potential guides when the population size varies dynamically. Two types of subregion division strategies are designed to enhance evolutionary diversity and convergence, respectively. By examining the performance on four benchmark functions, FGO is found to be competitive with or even superior to several other popular algorithms in terms of both effectiveness and efficiency, tending to reach the global optimum earlier. Moreover, FGO is evaluated by applying it to a parameter decision in a least squares support vector machine (LS-SVM) to verify its practical competence.