• 제목/요약/키워드: LQR technique

검색결과 34건 처리시간 0.02초

Optimization of LQR method for the active control of seismically excited structures

  • Moghaddasie, Behrang;Jalaeefar, Ali
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.243-261
    • /
    • 2019
  • This paper introduces an appropriate technique to estimate the weighting matrices used in the linear quadratic regulator (LQR) method for active structural control. For this purpose, a parameter is defined to regulate the relationship between the structural energy and control force. The optimum value of the regulating parameter, is determined for single degree of freedom (SDOF) systems under seismic excitations. In addition, the suggested technique is generalized for multiple degrees of freedom (MDOF) active control systems. Numerical examples demonstrate the robustness of the proposed method for controlled buildings under a wide range of seismic excitations.

자율 주행 헬리콥터의 위치 추종 제어를 위한 LQR 제어 및 신경회로망 보상 방식 (Position Tracking Control of an Autonomous Helicopter by an LQR with Neural Network Compensation)

  • 엄일용;석진영;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제11권11호
    • /
    • pp.930-935
    • /
    • 2005
  • In this paper, position tracking control of an autonomous helicopter is presented. Combining an LQR method and a proportional control forms a simple PD control. Since LQR control gains are set for the velocity control of the helicopter, a position tracking error occurs. To minimize a position tracking error, neural network is introduced. Specially, in the frame of the reference compensation technique for teaming neural network compensator, a position tracking error of an autonomous helicopter can be compensated by neural network installed in the remotely located ground station. Considering time delay between an auto-helicopter and the ground station, simulation studies have been conducted. Simulation results show that the LQR with neural network performs better than that of LQR itself.

LQR을 사용한 최적 PI-PD제어기 동조 (An Optimal Tuning of PI-PD Controller Via LQR)

  • 강근형;서병설
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.109-112
    • /
    • 2005
  • This paper presents an optimal and robust PI-PD controller design method for the second-order systems both with dead time and without dead time to satisfy the design specifications in the time domain via LQR design technique. The optimal tuning method of PI-PD controller are also developed by setpoint weighting and neural networks. It is shown that the simulation results show significantly improved performance by proposed method.

  • PDF

Intelligent Technique Application for Autonomous Lateral Position Control of an Unmanned 4 Wheel Steered Snowplow Robotic Vehicle

  • Jung, Seul;Hsia, T.C.
    • 대한임베디드공학회논문지
    • /
    • 제6권3호
    • /
    • pp.132-138
    • /
    • 2011
  • This paper presents an intelligent control approach for lateral position control of an autonomous four wheel steered snowplowing robotic vehicle. The vehicle is built for removing snow on the highway. Dynamics of the vehicle is derived and linearized for LQR control. Lateral position is controlled by the LQR method first, then the neural network control technique is introduced to improve tracking performances under the presence of load. The feasibility of using four wheel steering control is investigated by simulation studies of lateral position tracking of the Ford F-250 truck model. Performances of a LQR control method and a neural network control method under virtual snowplowing situation are compared.

PSCAD/EMTDC를 이용한 전압 Sag 보상을 위한 배전용 정지형 보상기의 LQR 제어기 설계 (Design of LQR Controller of DSIATCOM for Compensating Voltage Sag Using PSCAD/EMTDC)

  • 이명언;정수영;최규하
    • 에너지공학
    • /
    • 제13권1호
    • /
    • pp.68-74
    • /
    • 2004
  • 본 논문에서는 전압 sag 보상을 위한 배전용 정지형 보상기 (DSTATCOM) 제어기를 설계하고 PSCAD/EMTDC로 확인하였다. DSIATCOM의 전류성분을 dq분해 해석을 통하여 상태방정식을 유도하고 부하모델과 네트워크의 제약조건을 고려하여 결합 모델을 제시하였다. 1선 지락 사고시 PI 제어기보다 LQR 제어기의 응답 특성이 우수함을 검증하고 전압 Sag가 개선됨을 보였다.

웨이블렛 신경회로망 제어기를 이용한 비선형 시스템의 위치 제어에 관한 연구 (The Study on Position Control of Nonlinear System Using Wavelet Neural Network Controller)

  • 이재현
    • 한국정보통신학회논문지
    • /
    • 제12권12호
    • /
    • pp.2365-2370
    • /
    • 2008
  • 본 논문에서는 비선형 시스템의 위치 제어를 위하여 웨이블렛 신경회로망 제어기를 구성하였으며, 웨이블렛 신경회로망은 LQR 제어기의 성능을 향상 시킬 목적으로 사용한다. 불안전한 비선형 시스템을 선형화 시키고 안정화된 선형 시스템을 만들기 위하여 LQR를 사용하며, 외란에 효과적으로 적응하기 위하여 웨이블렛 신경회로망 제어기를 사용한다. 이 제어기를 비선형 시스템의 위치 제어에 적용하여 실험을 통해 그 유효성을 검정하였다.

Hybrid Fuzzy Learning Controller for an Unstable Nonlinear System

  • Chung, Byeong-Mook;Lee, Jae-Won;Joo, Hae-Ho;Lim, Yoon-Kyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권1호
    • /
    • pp.79-83
    • /
    • 2000
  • Although it is well known that fuzzy learning controller is powerful for nonlinear systems, it is very difficult to apply a learning method if they are unstable. An unstable system diverges for impulse input. This divergence makes it difficult to learn the rules unless we can find the initial rules to make the system table prior to learning. Therefore, we introduced LQR(Linear Quadratic Regulator) technique to stabilize the system. It is a state feedback control to move unstable poles of a linear system to stable ones. But, if the system is nonlinear or complicated to get a liner model, we cannot expect good results with only LQR. In this paper, we propose that the LQR law is derived from a roughly approximated linear model, and next the fuzzy controller is tuned by the adaptive on-line learning with the real nonlinear plant. This hybrid controller of LQR and fuzzy learning was superior to the LQR of a linearized model in unstable nonlinear systems.

  • PDF

LQR 제어 기법을 적용한 수면 근처에서의 수중운동체 심도 제어 (Depth Control of a Submerged Body Near the Free Surface by LQR Control Method)

  • 김동진;이기표;최진우;이성균
    • 대한조선학회논문집
    • /
    • 제46권4호
    • /
    • pp.382-390
    • /
    • 2009
  • The submerged body near the free surface is disturbed by the 1st and 2nd order wave forces, which results in unstable movements when no control is applied. In this paper, the vertical motions of the submerged body are analyzed, and the time-variant nonlinear system for the vertical motions of the submerged body is transformed to the time-invariant linear system in state space. Next, depth controller of the submerged body is designed by using LQR control, one of the modern optimal control technique. Numerical simulation shows that effective depth controls can be achieved by LQR control.

Neural Network Control Technique for Automatic Four Wheel Steered Highway Snowplow Robotic Vehicles

  • Jung, Seul;Lasky, Ty;Hsia, T.C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1014-1019
    • /
    • 2005
  • In this paper, a neural network technique for automatic steering control of a four wheel drive autonomous highway snowplow vehicle is presented. Controllers are designed by the LQR method based on the vehicle model. Then, neural network is used as an auxiliary controller to minimize lateral tracking error under the presence of load. Simulation studies of LQR control and neural network control are conducted for the vehicle model under a virtual snowplowing situation. Tracking performances are also compared for two and four wheeled steering vehicles.

  • PDF

LQR 기법을 이용한 로봇다리의 다중입력 유압시스템 제어에 관한 연구 (A Study on the Control of Multi-Input Hydraulic System for Robot Leg using LQR Technique)

  • 유삼현;임수철
    • 한국군사과학기술학회지
    • /
    • 제12권4호
    • /
    • pp.540-547
    • /
    • 2009
  • In the near future, military robots are likely to be substituted for military personnel in the field of battle. The power system of a legged robot is considerably more complex than the one used for a land vehicle because of the coordination and stability issues due to the large number of degree of freedom. In this paper, a servovalve-piston combination system for a straight-line motion of robot leg is modeled as three degree of freedom based on double inputs and single output transfer function. The output is the displacement of piston from neutral. The inputs are valve displacement from neutral and arbitrary load force in this system. LQR(Linear Quadratic Regulator) technique is applied in order to achieve robust stability and fast responses of the system. The Kalman filter loop, rejection of disturbance and noise, riccati equation, filter gain matrix, and frequency domain equality are analyzed and designed.