• Title/Summary/Keyword: LQG/LTR control system

Search Result 77, Processing Time 0.024 seconds

A Modified LQG/LTR Method for Nonminimum Phase Systems (비최소위상 시스템을 위한 수정된 LQG/LTR 방법)

  • Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.279-281
    • /
    • 1992
  • In this paper, an LQG/LTR procedure for stable nonminimum phase systems is suggested using predictor scheme. In the method, the performance of the target feedback loop can be easily adjusted and the recovery error is less dependent on the location of NMP zeros than previous methods. The gain and phase margin and the robust ness for modeluncertainty of the suggested control system are obtained.

  • PDF

Development of a Heated Vapor Inhalator Using LQG/LTR

  • Jaehoon Rhee;Kwangseok Chae;Changwan Jeon;Park, Joonsoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.60.3-60
    • /
    • 2002
  • 1. Introduction 2. The Localized Aerosol Hyperthermia 3. Hardware Development of a Heated Vapor Inhalator 4. Modeling of the Control System 5. The Design of LQG/LTR Controller 6. Conclusion

  • PDF

Robust controller design and performance analysis of seeker scan-loop (탐색기 주사루프의 강인 제어기 설계와 성능분석)

  • Lee, Ho-Pyeong;Hwang, Hong-Yeon;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.110-119
    • /
    • 1994
  • The Robust Controller for scan-loop is designed using LQG/LTR Methodology. The design and analysis of spiral, rosette and conical scan patterns are discussed. The perfermance and robustness of the LQG/LTR controller are analyzed through experiments and cpmpared with those of the P-controller. Especially to improve the scan performance at large look angle, the cage coil output is linearized using a binomial equation. It is demonstrated that the scan-loop system by the LQG/LTR control is very robust to phase uncertainties.

  • PDF

Composite Control of Active Suspension System (차량 능동 현가장치의 성능 향상을 위한 복합제어기 설게)

  • Han, Ki-Bong;Lee, Shi-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.74-81
    • /
    • 1995
  • In this paper, a composite controller cosisted of bandpass feedback controller and LQG/LTR controller is applied to a quarter-car model moving on a randomly profiled road. The LQG/LTR controller is used to achieve a design transfer toop. A bandpass feedback controller is adopted to eliminate the response due to the disturbance, which generally can not be measured, confined within an interested frequence range. The random road profile considered as colored noise is shaped from white noise by use of shaping filter. The performance of the composite control system is compared with that of an LQG/LTR control system.

  • PDF

The Robust Controller Design for Lateral Control of Vehicles (차량의 횡방향 모델에 대한 강인 제어기 설계)

  • 김은주;하성기;정승권;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.496-499
    • /
    • 2002
  • The LQG/LTR controller is a robust and stable control which is systematic method with a view of engineering. And the H$^{\infty}$ scheme is adopted for the design of the controller to reduce the effects of the disturbances. In this paper, LQG/LTR and H$^{\infty}$ Controller Design of Lateral Control System for an Automobile is developed with 3 DOF (degree-of-freedom) model. The performance has been compared for the employed two types of controllers via computed simulations. The results show that the H$^{\infty}$ controller provides more robustness property for the disturbances and lower control input.

The Robust Controller Design for Lateral Control of Vehicles (차량의 횡방향 모델분석 및 제어기 설계)

  • 김은주;하성기;배종일;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.318-321
    • /
    • 2002
  • The LQG/LTR controller is a robust and stable control which is systematic method with a view of engineering. And the H$^{\infty}$ scheme is adopted for the design of the controller to reduce the effects of the disturbances. In this paper, LQG/LTR and H$^{\infty}$ Controller Design of Lateral Control System for an Automobile is developed with 3 DOF (degree-of-freedom) model. The performance has been compared for the employed two types of controllers via computed simulations. The results show that the H$^{\infty}$ controller provides more robustness property for the disturbances and lower control input.

  • PDF

차량 능동 현가장치의 혼합제어기 설계

  • 한기봉;이시복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.293-298
    • /
    • 1993
  • In ground vehicles, the increasing demand for safety and ride comfort which are trade-off relation, especially at high speeds, has led to the development od actively controlled suspensions. The LQG/LTR controller can be used to design a robust feedback control system that deals with disturbance rejection properties as well as insensitivity to modelling errors and sensor noise. And when the disturbance can not be measured but is limited within a certain frequency range, a bandpass feedback to eliminate the disturbance response can be used. In this paper, hybrid controller cosisted of bandpass feedback controller and LQG/LTR controller is applied to a quarter-car model moving on a randomly profiled road. The random road profile considered as colored noise is shaped from white noise by use of shaping filter. The performance of the hybrid control system is compared with that of an LQG/LTR controlled system.

  • PDF

A Study on the Design of an Indirect Shift Transient Torque Controller for an Automatic Power Transmission System (자동변속장치의 간접식 과도토오크 제어기 설계에 관한 연구)

  • Jung, H.S.;Lee, K.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.110-120
    • /
    • 1994
  • Due to the increasing demands in comfortable drivability, most motor companies are developing their own unique shift controller to suppress the shift shock induced by gear change. For a typical automatic transmission system, the dynamic constraints of friction clutch was clarified for efficient program development and major factors effecting the shift transient was confirmed by simulation study. The MIMO LQG/LTR controller was designed to control the turbine and corresponding gear speed. By establishing the control strategy recalling transient response during shift the speed controller mentioned above was used as an indirect torque controller. Consequently a new concept for a systematic design method of shift controller applicable to wide-varying systems was suggested which is time efficient and cost efficient saving a lot of experimental study.

  • PDF

LQG/LTR with NMP plant

  • Kang, Jin-Shig;Suh, Byung-Sul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.847-851
    • /
    • 1990
  • In this paper we present a method of reducing controller design problem from LQG/LTR approach to H.inf. optimization. The condition of the existance of the optimal solution is derived. In order to derive the controller equation for NMP plant we reduce the H.inf. LTR problem to Nehari's extension problem and derive the optimal controller equation which is best approximation for this problem. Furthermore, we show that the controller obtained by presented method guarantee the asymptotic LTR condition and stability of closed loop system.

  • PDF

A Study on the Robust Control of Systems Dominantly Subkected to Modeling Errors and Uncertainties (모델링오차와 불확실성을 지배적으로 받는 시스템의 강인한 제어에 관한 연구)

  • 김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.67-80
    • /
    • 1995
  • In order to control systems which are dominantly subjected to modeling errors and uncertainties, control strategies must deal with the effect of modeling errors and uncertainties. Since most of control methods based on system mathematical model, such as LQG/LTR method, have been developed mainly focused on stability robustness, they can not smartly improve the transient response disturbed by modeling errors and/or uncertainties. In this research, a fuzzy PID control method is suggested, which can stably improve the transient responses of systems disturbed by modeling errors as well as systems not entirely using mathematical models. So as to assure the effectiveness of suggested control method, computer simulations are accomplished for some example systems, through the comparison of transient responses.

  • PDF