• 제목/요약/키워드: LQG(Linear Quadratic Gaussian)

검색결과 69건 처리시간 0.026초

압전 작동기/감지기를 이용한 평판의 혼합형 능동 진동제어 기술 (Hybrid Technique for Active Vibration Control of Plate using Piezoceramic Actuators/Sensors)

  • 김영식;이철;김인수
    • 소음진동
    • /
    • 제10권6호
    • /
    • pp.1048-1058
    • /
    • 2000
  • 본 논문에서는 압전 세라믹 재료를 작동기 및 감지기로 이용한 사각 경계면이 고정된 얇은 사각평판의 능동 진동제어 방법을 제시한다. 실험 데이터에 기초한 다중 입출력계의 주파수영역 모델링방법을 이용하여 분포된 센서 및 구동기 특성이 포함된 구조물의 동적 특성이 규명된다. 제어기 구조로는 혼합형을 채택하고 되먹임 제어기는 LQG 제어기법에 의해 설계된다. 앞먹임 제어기는 다중 filtered-$x$ 최소자승오차법에 의해 적응되도록 한다. 진동제어에 대한 시뮬레이션 및 실험결과는 제안된 제어기법이 지속적 외란 및 과도적 외란에 효율적으로 적용될 수 있음을 보인다.

  • PDF

Model predictive control strategies for protection of structures during earthquakes

  • Xu, Long-He;Li, Zhong-Xian
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.233-243
    • /
    • 2011
  • This paper presents a theoretical study of a model predictive control (MPC) strategy employed in semi-active control system with magnetorheological (MR) dampers to reduce the responses of seismically excited structures. The MPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an objective function, which can compensate for the effect of time delay that occurred in real application. As an example, a 5-story building frame equipped with two 20 kN MR dampers is presented to demonstrate the performance of the proposed MPC scheme for addressing time delay and reducing the structural responses under different earthquakes, in which the predictive length l = 5 and the delayed time step d = 10, 20, 40, 60, 100 are considered. Comparison with passive-off, passive-on, and linear quadratic Gaussian (LQG) control strategy indicates that MPC scheme exhibits good control performance similar to the LQG control strategy, both have better control effectiveness than two passive control methods for most cases, and the MPC scheme used in semi-active control system show more effectiveness and robustness for addressing time delay and protecting structures during earthquakes.

파랑중 최소수선면적 쌍동선(SWATH)의 운동제어 (Motion Control of a SWATH Ship in Waves)

  • 이판묵;이상무;홍사영;홍도천
    • 한국기계연구소 소보
    • /
    • 통권17호
    • /
    • pp.157-165
    • /
    • 1987
  • The SWATH concept hull form which is capable of high speed navigation with small oscillatory motions in waves, was developed from the catamaran type hull forms. This paper describes how the motion of a SWATH ship in irregular waves can be reduced by regulating the stabilizing fins. The optimal regulator and LQG (Linear Quadratic Gaussian) controller for vertical plane motion have been applied for both platforming mode and contouring mode controls. The calculations of hydrodynamic coefficients and external forces are possible for defining the system equation for the design purpose of motion control. Performances of the controlled system are compared with those of original system.

  • PDF

Nonlinear control of structure using neuro-predictive algorithm

  • Baghban, Amir;Karamodin, Abbas;Haji-Kazemi, Hasan
    • Smart Structures and Systems
    • /
    • 제16권6호
    • /
    • pp.1133-1145
    • /
    • 2015
  • A new neural network (NN) predictive controller (NNPC) algorithm has been developed and tested in the computer simulation of active control of a nonlinear structure. In the present method an NN is used as a predictor. This NN has been trained to predict the future response of the structure to determine the control forces. These control forces are calculated by minimizing the difference between the predicted and desired responses via a numerical minimization algorithm. Since the NNPC is very time consuming and not suitable for real-time control, it is then used to train an NN controller. To consider the effectiveness of the controller on probability of damage, fragility curves are generated. The approach is validated by using simulated response of a 3 story nonlinear benchmark building excited by several historical earthquake records. The simulation results are then compared with a linear quadratic Gaussian (LQG) active controller. The results indicate that the proposed algorithm is completely effective in relative displacement reduction.

A CONTROLLER DESIGN OF ACTIVE SUSPENSION USING EVOLUTION STRATEGY AND NEURAL NETWORK

  • Cheon, Jong-Min;Kim, Seog-Joo;Lee, Jong-Moo;Kwon, Soon-Man
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1530-1533
    • /
    • 2005
  • In this paper, we design a Linear Quadratic Gaussian controller for the active suspension. We can improve the inherent suspension problem, trade-off between the ride quality and the suspension travel by selecting appropriate weights in the LQ-objective function. Because any definite rules for selecting weights do not exist, we use an optimization-algorithm, Evolution Strategy (ES) to find the proper control gains for selected frequencies, which have major effects on the vibrations of the vehicle's state variables. The frequencies and proper control gains are used for the neural network data. During a vehicle running, the trained on-line neural network is activated and provides the proper gains for non-trained frequencies. For the full-state feedback control, Kalman filter observes the full states and Fourier transform is used to detect the frequency of the road.

  • PDF

부하 변동 공압계의 모델 기준 적응제어 (Model Reference Adaptive Control of the Pneumatic System with Load Variation)

  • 오현일;김인수;김기범
    • 한국기계가공학회지
    • /
    • 제14권3호
    • /
    • pp.57-64
    • /
    • 2015
  • In this paper, a model reference adaptive control (MRAC) scheme is applied for the precise and robust motion control of a pneumatic system with load variation. The reference model for MRAC is designed systematically using linear quadratic Gaussian control with loop transfer recovery (LQG/LTR). The sigmoid function of inverse velocity is used to compensate for the nonlinear friction force between the sliding parts. The experimental results show that MRAC effectively overcame the limit of the PID controller when there was unknown disturbance, including abrupt load variation and model uncertainty in the pneumatic control system.

주파수 영역 모델 방법을 이용한 평판 구조물의 능동 소음전달 제어 (Active Noise Transmission Control Through a Panel Structure Using a Frequency Domain Identification Method)

  • 김영식;김인수;문찬영
    • 한국정밀공학회지
    • /
    • 제18권9호
    • /
    • pp.71-81
    • /
    • 2001
  • This paper analyzes the effectiveness of minimizing vibration and sound transmission on/through a thin rectangular plate by both feedback control and hybrid control which combines adaptive feedforward control with a feedback loop. An experimental system identification technique using the matrix-fractional curve-fitting of the frequency response data is introduced for complex shaped structures. This identification technique reduces the model order o the MIMO(Multi-Input Multi-Output) system which simplifies the practical implementation. The adaptive feedforward control uses a Multiple filtered-x LMS(Least Mean Square) algorithm and the feedback control uses a multivariable digital LQG(Linear Quadratic Gaussian) algorithm. Experimental results show that an effective reduction of sound transmission is achieved by the hybrid control scheme when both vibration and noise measurement signals are incorporated in the controller.

  • PDF

사장교에 장착된 준능동형 제어시스템의 비용효율성 평가 (Cost-Effectiveness Evaluation of Semi-Active Control System for Cable-Stayed Bridge)

  • 함대기;박원석;고현무;옥승용;박관순
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.388-395
    • /
    • 2005
  • This paper presents cost-effectiveness evaluation of semi-active control system for cable-stayed bridge under earthquake excitation. Bi-state control method with Linear Quadratic Gaussian(LQG) optimal controller is used for generic semi-active dampers. Cost-effectiveness of the structural control system is investigated by using the life-cycle cost(LCC) concept. The evaluation results show that the efficiency of semi-active control system is increased when the damage cost due to the failure of bridge system or the bridge importance is enlarged. It was also found that the damper cost had little influence on the cost-effectiveness of semi-active control system if it was relatively small to the initial construction cost.

  • PDF

클러스터링에 기초한 자기부상시스템의 퍼지제어기 모델링 (Fuzzy Controller Modeling for Electromagnetic Levitation Systems based on Clustering Algorithm)

  • 김민수;변윤섭;이관섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 특별세미나 특별세션
    • /
    • pp.145-159
    • /
    • 2006
  • This paper describes the development of a clustering based fuzzy controller of an electromagnetic suspension vehicle using gain scheduling method and Kalman filter for a simplified single magnet system. Electromagnetic suspension vehicle systems are highly nonlinear and essentially unstable systems For achieving the levitation control of the DC electromagnetic suspension system, we considered a fuzzy system modeling method based on clustering algorithm which a set of input/output data is collected from the well defined Linear Quadratic Gaussian(LQG) controller. Simulation results show that the proposed clustering based fuzzy controller methodology robustly yields uniform performance with adequate gap response over the mass variation range.

  • PDF

실내소음 저감을 위한 능동패널의 체속도 제어 (Volume Velocity Control of Active Panel to Reduce Interior Noise)

  • 김인수
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.33-41
    • /
    • 1999
  • This paper presents a method of actively controlling the interior noise by a trim panel with hybrid feedforward-feedback control loop. The control technique is designed to minimize the vibration of panel whose motion is limited to that of a piston (out-of-plane motion). The hybrid controller consists of an adaptive feedforward controller in conjunction with a linear quadratic Gaussian (LQG) feedback controller. In order to maintain control performance of both persistent and transient disturbances, the feedback loop speeds up the adaptation rate of feedforward controller by improving damping capacity of secondary plant related with the adaptation rule. Numerical simulation and experimental result indicate that the hybrid controller is a more effective method for reducing the vibration of the panel (and therefore the interior noise) compared to using feedforward controller.

  • PDF