• 제목/요약/키워드: LPS-stimulated RAW 264.7 macrophages

검색결과 359건 처리시간 0.029초

Inhibitory Effects on Oral Microbial Activity and Production of Lipopolysaccharides-Induced Pro-Inflammatory Mediators in Raw264.7 Macrophages of Ethanol Extract of Perilla flutescens (L.) Britton

  • Jeong, Moon-Jin;Lim, Do-Seon;Lee, Myoung-Hwa;Heo, Kyungwon;Kim, Han-Hong;Jeong, Soon-Jeong
    • 치위생과학회지
    • /
    • 제20권4호
    • /
    • pp.213-220
    • /
    • 2020
  • Background: The leaves of Perilla frutescens, commonly called perilla and used for food in Korea, contain components with a variety of biological effects and potential therapeutic applications. The purpose of this study was to identify the components of 70% ethanol extracted Perilla frutescens (EEPF) and determine its inhibitory effects on oral microbial activity and production of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharides (LPS)-stimulated Raw264.7 macrophages, consequently, to confirm the possibility of using EEPF as a functional component for improving the oral environment and preventing inflammation. Methods: One kg of P. frutescens leaves was extracted with 70% ethanol and dried at -70℃. EEPF was analyzed using high-performance liquid chromatography analysis, and antimicrobial activity against oral microorganisms was revealed using the disk diffusion test. Cell viability was elucidated using a methylthiazolydiphenyl-tetrazolium bromide assay, and the effect of EEPF on LPS-induced morphological variation was confirmed through microscopic observation. The effect of EEPF on LPS-induced production of pro-inflammatory mediators, NO and PGE2 was confirmed by the NO assay and PGE2 enzyme-linked immunosorbent assay. Results: The main component of EEPF was rosemarinic acid, and EEPF showed weak anti-bacterial and anti-fungal effects against microorganisms living in the oral cavity. EEPF did not show toxicity to Raw264.7 macrophages and had inhibitory effects on the morphological variations and production of pro-inflammatory mediators, NO and PGE2 in LPS-stimulated Raw264.7 macrophages. Conclusion: EEPF can be used as a functional material for improving the oral environment through the control of oral microorganisms and for modulating inflammation by inhibiting the production of inflammatory mediators.

Anti-inflammatory effect of methanol extract from Erigeron Canadensis L. may be involved with upregulation of heme oxygenase-1 expression and suppression of $NF{\kappa}B$ and MAPKs activation in macrophages

  • Sung, Jeehye;Sung, Misun;Kim, Younghwa;Ham, Hyeonmi;Jeong, Heon-Sang;Lee, Junsoo
    • Nutrition Research and Practice
    • /
    • 제8권4호
    • /
    • pp.352-359
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: In this study, we determined the anti-inflammatory activities and the underlying molecular mechanisms of the methanol extract from Erigeron Canadensis L. (ECM) in LPS-stimulated RAW264.7 macrophage cells. MATERIALS/METHODS: The potential anti-inflammatory properties of ECM were investigated by using RAW264.7 macrophages. We used western blot assays and real time quantitative polymerase chain reaction to detect protein and mRNA expression, respectively. Luciferase assays were performed to determine the transactivity of transcription factors. RESULTS: ECM significantly inhibited inducible nitric oxide synthase (iNOS)-derived NO and cyclooxygenase-2 (COX-2) derived PGE2 production in LPS-stimulated RAW264.7 macrophages. These inhibitory effects of ECM were accompanied by decreases in LPS-induced nuclear translocations and transactivities of $NF{\kappa}B$. Moreover, phosphorylation of mitogen-activated protein kinase (MAPKs) including extracellular signal-related kinase (ERK1/2), p38, and c-jun N-terminal kinase (JNK) was significantly suppressed by ECM in LPS-stimulated RAW264.7 macrophages. Further studies demonstrated that ECM by itself induced heme oxygenase-1 (HO-1) protein expression at the protein levels in dose-dependent manner. However, zinc protoporphyrin (ZnPP), a selective HO-1 inhibitor, abolished the ECM-induced suppression of NO production. CONCLUSIONS: These results suggested that ECM-induced HO-1 expression was partly responsible for the resulting anti-inflammatory effects. These findings suggest that ECM exerts anti-inflammatory actions and help to elucidate the mechanisms underlying the potential therapeutic values of Erigeron Canadensis L.

Ethanolic Extract of Chondria crassicaulis Inhibits the Expression of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 in LPS-Stimulated RAW 264.7 Macrophages

  • Kim, Yeon-Kye;Jeong, Eun-Ji;Lee, Min-Sup;Yoon, Na-Young;Yoon, Ho-Dong;Kim, Jae-Il;Kim, Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • 제14권4호
    • /
    • pp.275-282
    • /
    • 2011
  • Inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) have been implicated in various inflammatory diseases. In this study, we investigated the anti-inflammatory activities of Chondria crassicaulis ethanolic extract (CCE) by measuring its effects on the expression of iNOS and COX-2 proteins in lipopolysaccharide (LPS)-treated RAW 264.7 murine macrophages. CCE significantly and dose-dependently inhibited the LPS-induced release of nitric oxide and prostaglandin $E_2$, and suppressed the expression of iNOS and COX-2 proteins in LPS-stimulated RAW 264.7 cells, without causing any cytotoxicity. It also inhibited the production of the pro-inflammatory cytokines such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor (TNF)-${\alpha}$ in LPS-stimulated RAW 264.7 cells. Moreover, treatment with CCE strongly suppressed nuclear factor-${\kappa}B$ (NF-${\kappa}B$) promoter-driven expression in LPS-treated RAW 264.7 cells. CCE treatment blocked nuclear translocation of the p65 subunit of NF-${\kappa}B$ by preventing proteolytic degradation of inhibitor of ${\kappa}B-{\alpha}$. These results indicate that CCE regulates iNOS and COX-2 expression through NF-${\kappa}B$-dependent transcriptional control, and identifies potential candidates for the treatment or prevention of inflammatory diseases.

Anti-inflammatory Effects of Ethanol Extract of Korean Medicinal Plants at Hwaak Mountain in LPS-induced RAW 264.7 Macrophages

  • Kang, Yun-Mi;Jeon, Eun-jin;Chung, Kyung-Sook;Cheon, Se-Yun;Park, Jong Hyuk;Han, Yoo-Chang;An, Hyo-Jin
    • 대한본초학회지
    • /
    • 제32권2호
    • /
    • pp.25-32
    • /
    • 2017
  • Objectives : This study was conducted to investigate candidate materials as anti-inflammatory agent from extracts of Korean medicinal plants in Hwaak mountain. Ligustrum obtusifolium (LO) is a Korea medicinal plants that commonly used for robustness and hemostasis. It has been reported that LO has exhibited anti-ischemic, anti-oxidative, anti-hypolipidemic, anti-tumor and hypoglycemic effects. However, LO has not been previously reported to have an anti-inflammatory effect. Therefore, we have evaluated the anti-inflammatory effects of LO and its underlying molecular mechanisms in LPS-induced RAW 264.7 macrophages. Methods : Cell viability was determined by MTT assay in RAW 264.7 macrophages. Nitric Oxide (NO) was measured with Griess reagent and pro-inflammatory cytokines were detected by ELISA in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Protein expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and p65 subunit of nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) were determined by Western blot analysis. Results : Among 15 extracts of Korean medicinal plants tested, Ligustrum obtusifolium (LO) showed the inhibition of NO production without cytotoxicity. LO reduced the expression levels of iNOS and COX-2 proteins in LPS-simulated RAW 264.7 macrophages in dose-dependent manner. Consistent with these data, LO inhibited the productions of $TNF-{\alpha}$, IL-6, and $IL-1{\beta}$ in LPS-simulated RAW 264.7 macrophages. Furthermore, LO attenuated the LPS-induced nuclear translocation of p65 $NF-{\kappa}B$ in RAW 264.7 macrophages involving suppression of $NF-{\kappa}B$ activation. Conclusions : Taken together, these results suggest that the anti-inflammatory effects of LO is associated with regulation of inflammatory mediators via inhibition of $NF-{\kappa}B$ activation in LPS-treated RAW 264.7 macrophages.

LPS로 유도된 마우스 복강 대식세포에서 차가버섯 열수 추출물의 염증 억제 효과 (Anti-inflammatory Effect of Inonotus obliquus Extracts in Lipopolysaccharide-induced Mouse Peritoneal Macrophage)

  • 고숙경;표명윤
    • 생약학회지
    • /
    • 제42권3호
    • /
    • pp.253-259
    • /
    • 2011
  • Macrophages play a vital role in the innate immune system involving defensive cytokines such as TNF (tumor necrosis factor)-${\alpha}$ and nitric oxide (NO). Therefore, we try to elucidate the anti-inflammatory activity of Chaga mushroom (Inonotus Obliquus, IO) in murine macrophages. Raw 264.7 cells and peritoneal macrophages of mice were cultured with or without LPS/LPS + IFN-${\gamma}$ in the presence of IO aqueous extracts (IOE 0.2, 2, 20, 100 ${\mu}g$/mL) for 24 hr and 48 hr, respectively. Exposure of IOE caused the decrease of NO production and increase of TNF-${\alpha}$ production in dose-dependent manner in activated peritoneal macrophage in vitro. To further investigate anti-inflammatory effects of IO ex vivo, we orally administrated capsaicin (PC, 3 mg/kg/day) and IOE (100, 200, 400 mg/kg/day) for 4 consecutive days to C57BL/6 mice (7~9 weeks old, female), then observed the NO secretion and cytokine (TNF-${\alpha}$) production of LPS/LPS + INF-${\gamma}$-stimulated peritoneal macrophages. IOE inhibits NO secretion in dose-dependent manner both ex vivo and in vitro and increases the production of TNF-${\alpha}$ in vitro. In addition, we found that IOE possessed suppressive effects of LPS-stimulated TNF-${\alpha}$, IL-$1{\beta}$, COX-2, as well as iNOS expressions in Raw 264.7 cells. These findings indicate that IOE suppress not only the LPS-induced NO overproduction of murine peritoneal macrophages, but also iNOS, COX-2, TNF-${\alpha}$, and IL-$1{\beta}$ overexpression of LPS-induced Raw 264.7 cells. Consequently, our results suggest that IO may have the anti-inflammatory effects via suppression of the inflammatory cytokines and mediators, and be useful for the treatment of inflammatory diseases.

Lipopolysaccharide에 의한 RAW264.7 세포의 염증매개물질 생성에 대한 Septicine의 저해 활성 (Septicine Inhibits the Production of Inflammatory Mediators in Lipopolysaccharide-Stimulated Murine Macrophages)

  • 박근묵;김진경
    • 생명과학회지
    • /
    • 제21권9호
    • /
    • pp.1310-1314
    • /
    • 2011
  • 염증은 바이러스 등의 병원체 및 다양한 물리.화학적 스트레스에 의하여 일어나는 생체방어 반응이나, 과도한 염증반응은 세포독성과 다양한 질환을 일으킨다. 따라서 염증반응에서 생성되는 과도한 염증매개물질들을 억제함으로 다양한 염증질환을 예방, 치료 할 수 있다. 본 연구에서는 Tylophora asthmatica, Tylophora ovata 등에 함유되어 있는 생리활성 성분인 septicine의 항염증 효과를 연구하였다. 생쥐의 대식세포주인 RAW264.7 세포에 lipopolysaccharide (LPS)를 처리하여 염증반응을 유도하고, septicine를 처리한 결과, septicine은 LPS 처리에 의한 nitric oxide (NO) 및 염증성 사이토카인의 분비를 현저히 억제시키는 것을 관찰 할 수 있었으며, NO의 생합성효소인 iNOS 단백질의 발현 또한 억제시킴을 확인 할 수 있었다. 이러한 연구결과는 염증반응을 조절하는 후보물질로써의 septicine의 가능성을 보여주는 것이다.

JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38

  • Yi, Young-Su;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권3호
    • /
    • pp.345-352
    • /
    • 2017
  • Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-$1{\beta}$ without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the $NF-{\kappa}B$ transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the $NF-{\kappa}B$ pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the $NF-{\kappa}B$ and AP-1 pathways, respectively.

목근화(木槿花) 물추출물의 항염효능에 관한 연구 (Effect of Hibisci Flos on Inflammatory Cytokines Production in lipopolysaccaride-stimulated Raw 264.7 Macrophages)

  • 이동민;한효상;이영종
    • 대한본초학회지
    • /
    • 제28권5호
    • /
    • pp.61-68
    • /
    • 2013
  • Objectives : Hibisci Flos has long been used for inflammatory diseases in traditional Korean medicine. However, little scientific investigation has been carried out. The aim of the present study is to investigate the effect of Hibisci Flos water extract (HF) on inflammatory cytokines production in Raw 264.7 cells stimulated by lipopolysaccaride (LPS). Method : HF was prepared by extracting with boiling water for 2 hours. We observed the cell viability of mouse macrophage Raw 264.7, the production of nitric oxide (NO) and the inflammatory cytokines such as interleukin (IL)-4, IL-5, IL-10, IL-15, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interferon-gamma (IFN-${\gamma}$), vascular endothelial growth factor (VEGF), granulocyte macrophage-colony stimulating factor (GM-CSF), and macrophage colony-stimulating factor (M-CSF) in Raw 264.7 cells stimulated by LPS. Result : The MTT assay was carried out to check the cellular toxicity of HF. No significant toxicity was observed in the experiment. HF significantly inhibited the increase of NO in the macrophages induced by LPS after 24 hour treatment. HF significantly inhibited the production of IL-4, IL-5, IL-10, IL-15, TNF-${\alpha}$, IFN-${\gamma}$, VEGF, GM-CSF and M-CSF in the Raw 264.7 cells induced by LPS in the concentration of $25{\mu}g/mL$ or higher. Conclusion : These results suggest that HF might have regulatory effects on LPS-induced inflammatory cytokine production, which might explain its beneficial effect in the treatment of inflammatory disease.

패혈증에서 PD-L1 (Programmed Cell Death-ligand 1)의 발현 증가 기전 (Induction Mechanism of PD-L1 (Programmed Cell Death-ligand 1) in Sepsis)

  • 이상민
    • Tuberculosis and Respiratory Diseases
    • /
    • 제65권4호
    • /
    • pp.343-350
    • /
    • 2008
  • PD-L1 is expressed in a variety of antigen-presenting cells and provides T cell tolerance via ligation with its receptor PD-1 and B7-1 on T cells. Stimulation with lipopolysaccharide (LPS) can increase the level of PD-L1 expression in B cells and macrophages, which suggests that this molecule plays a role in the immunosuppression observed in severe sepsis. The aim of this study was to identify which of the downstream pathways of TLR4 are involved in the up-regulation of PD-L1 by LPS in macrophages. Flow cytometry was used to examine the expression of PD-L1 in RAW 264.7 macrophages stimulated with LPS. The following chemical inhibitors were used to evaluate the role of each pathway: LY294002 for PI3K/Akt, SB202190 for p38 MAPK, and U0126 for MEK. LPS induced the expression of PD-L1 in a time- and dose-dependent manner. Transfection of siRNA for TLR4 suppressed the induction of PD-L1. Pretreatment with LY294002 and SB202190 decreased the level of PD-L1 expression but U0126 did not. Overall, the PI3K/Akt and p38 MAPK pathways are involved in the up-regulation of PD-L1 expression in RAW 264.7 macrophages stimulated with LPS.

금은화 추출액이 RAW 264.7 Macrophage에서의 NO와 $PGE_2$ 생성에 미치는 영향 (Effects of Hot Aqueous and Ethanol Extract from $Lonicera$ $japonica$ $Flos$ on NO and $PGE_2$ in Macrophage)

  • 윤경진;이은용
    • Journal of Acupuncture Research
    • /
    • 제29권1호
    • /
    • pp.67-74
    • /
    • 2012
  • Objectives : The objective of this study is to study the effects of hot aqueous extract and ethanol extract from $Lonicera$ $japonica$ $Flos$ on nitric oxide(NO) and prostaglandin $E_2(PGE_2)$ production in macrophage. Methods : $Lonicera$ $japonica$ $Flos$ was extracted in two ways. One was extracted with distilled water(2L) for 4 h and the other one was extracted with 70% ethanol (2L) for 4h. The RAW 264.7 macrophage was subclutured. In order to evaluate cytotoxicity, MTT assay was performed. The concentrations of NO were measured by Griess assay. The concentrations of $PGE_2$ were measured by enzyme immunoassay. Results : 25, $125{\mu}g/m{\ell}$ hot aqueous extract from $Lonicera$ $japonica$ $Flos$ inhibited NO production in LPS-stimulated RAW 264.7 macrophages significantly. 25, 125, $625{\mu}g/m{\ell}$ ethanol extract from $Lonicera$ $japonica$ $Flos$ inhibited NO production in LPS-stimulated RAW 264.7 macrophages significantly. 150, $200{\mu}g/m{\ell}$ hot aqueous extract and ethanol extract from $Lonicera$ $japonica$ $Flos$ inhibited $PGE_2$production in LPS-stimulated RAW 264.7 macrophages significantly. Conclusions : This study suggests that hot aqueous extract and ethanol extract from $Lonicera$ $japonica$ $Flos$ suppress NO and $PGE_2$ production. So hot aqueous extract and ethanol extract from $Lonicera$ $japonica$ $Flos$ may have an anti-inflammation effect.