• Title/Summary/Keyword: LPS-induced inflammation

Search Result 952, Processing Time 0.027 seconds

Anti-Inflammatory Effects of Oenanthe javanica Ethanol Extract and Its Fraction on LPS-Induced Inflammation Response (Lipopolysaccharide로 유도한 대식세포의 염증반응에서 미나리 에탄올 추출물 및 분획물의 항염증 효과)

  • Jang, Ji-Hun;Cho, Hyun-Woo;Lee, Bo-Young;Yu, Kang-Yeol;Yoon, Ji-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.11
    • /
    • pp.1595-1603
    • /
    • 2016
  • The present study examined the anti-inflammatory effects of Oenanthe javanica ethanol extract (OJE) and its fraction on the lipopolysaccharide (LPS)-induced inflammatory response in RAW 264.7 macrophage cells. OJE remarkably reduced protein expression of inducible nitric oxide (iNOS) and cyclooxygenase-2 (COX-2), resulting in inhibition of production of nitric oxide (NO). In order to identify the anti-inflammatory effects of bioactive fractions, OJE was fractionated into hexane, dichloromethane, ethyl acetate, and n-butanol fractions. The results show that the ethyl acetate and dichloromethane fractions reduced production of NO without cytotoxicity. Especially, the ethyl acetate fraction effectively reduced protein expression of iNOS and COX-2. Proinflammatory cytokine production was also reduced by ethyl acetate fractions in LPS-induced RAW 264.7 cells. These data suggest that OJE and its fraction possess pharmacological activity and might be useful for development of anti-inflammatory agents or dietary supplements.

Study on the anti-inflammatory effects of Cannabis sativa L. seed oil complex (햄프(Cannabis sativa L.)씨드오일 복합물의 항염증 효과에 관한 연구)

  • Chae-Hyun Kim;Se Gie Kim;Young-Ah Jang;Yong-Jin Kwon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.251-259
    • /
    • 2024
  • This study evaluated the potential of hemp seed oil (Cannabis sativa L. seed oil, CSO) and hemp seed oil complex (Cannabis sativa L. seed oil complex, CSOC) as an anti-inflammatory material through comparative analysis. Anti-inflammatory effects of CSO and CSOC were confirmed through lipopolysaccharide (LPS)-induced RAW264.7 model. As a result of confirming the inhibition of lipid oxidation through lipoxygenase inhibitory activity, CSO was not inhibited, but COSC was inhibited by more than 70%. As a result of confirming cytotoxicity through MTT analysis, CSO did not show cytotoxicity, but CSOC showed cytotoxicity at over 200 ㎍/ml. In LPS-induced RAW264.7, the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) were significantly inhibited by CSOC compared to CSO. Additionally, CSOC significantly inhibited the expression of cyclooxygenase (COX)-2 and the production of prostaglandin E2 (PGE2). Through this study, we confirmed that CSOC has superior anti-inflammatory effects than CSO and has the potential to be used as an anti-inflammatory material.

Anti-inflammatory effects of Lycoris chejuensis callus using biorenovation (Biorenovation 기법 적용 제주상사화 callus의 항염증 활성)

  • Hyehyun Hong;Tae-Jin Park;Yu-Jung Lee;Jung-Hwan Kim;Seung-Young Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.197-203
    • /
    • 2023
  • Callus cultivation is a method for producing a large amount of tissue of a plant in the laboratory, regardless of the environment. Lycoris chejuensis, a plant species native to jeju island, is a member of the Lycoris family has been used as a traditional medicine for the treatment of diverse diseases. In this study, we evaluated anti-inflammatory effect of biorenovated Lycoris chejuensis callus (LCB) in lipopolysaccharide (LPS)-induced RAW264.7 cells. As a result, LCB was less toxic to the cells in the concentration range of 25, 50, and 100 ㎍/mL as shown by the improved viability of LCB treated cells than compared to Lycoris chejuensis callus (LC) treatment. In addition, LCB inhibited the generation of NO and prostaglandin E2 through the suppression of inducible nitric oxide synthase and cyclooxygenase-2 protein expression. LCB also attenuated the expression of interleukin-1β, interleukin-6 and tumor necrosis factor-α induced by LPS. The results suggest that LCB has anti-inflammatory activity on the LPS-induced inflammatory response and may be suitable for the development of potent functional cosmetic material.

Protective Effect of Fresh Ginseng Kkakdugi against LPS-induced Inflammation in RAW264.7 Macrophages (LPS에 의해 활성화된 RAW264.7 대식세포에서 수삼깍두기의 항염증 효과)

  • Kim, Se-Mi;Jeon, Young-Joo;Sim, Hyun-Ji;Lee, Young-Eun
    • Journal of the Korean Society of Food Culture
    • /
    • v.30 no.2
    • /
    • pp.197-205
    • /
    • 2015
  • This study was conducted to investigate the bioconversion of ginsenosides as well as anti-inflammatory activities of fresh ginseng Kkakdugi during fermentation. Fresh ginseng Kkakdugi reached proper ripeness, pH 4.30, and acidity 1.69% at $15^{\circ}C$ after 10 days. Lactic acid bacteria grew until reaching $1.10{\times}10^9CFU/mL$ after 20 days of fermentation, and ${\beta}$-glucosidase activity increased from 1.154 to 1.885 units/g. The bioconversion of ginsenosides was confirmed based on increased content of Rg3, an aglycone, from 0.13 to 0.17 mg/g during fermentation through HPLC. Fresh ginseng Kkakdugi did not display cytotoxicity up to the concentrations of $80{\mu}g/mL$, regardless of ripening period. Nitrite production and expression of inflammation-related proteins, iNOS and COX-2, decreased in a dose-dependent manner regardless of ripening period. From these results, fresh ginseng Kkakdugi showed the bioconversion of ginsenosides to aglycone during the lactic acid fermentation as well as an anti-inflammatory effect through the reduction of NO production and iNOS and COX-2 expression.

Anti-Inflammatory Effect of 3-Bromo-4,5-Dihydroxybenzaldehyde, a Component of Polysiphonia morrowii, In Vivo and In Vitro

  • Kang, Na-Jin;Han, Sang-Chul;Kang, Hyun-Jae;Ko, Geum;Yoon, Weon-Jong;Kang, Hee-Kyoung;Yoo, Eun-Sook
    • Toxicological Research
    • /
    • v.33 no.4
    • /
    • pp.325-332
    • /
    • 2017
  • 3-Bromo-4,5-dihydroxybenzaldehyde (BDB) is a natural bromophenol compound that is most commonly isolated from red algae. The present study was designed to investigate the anti-inflammatory properties of BDB on atopic dermatitis (AD) in mice induced by 2,4-dinitrochlorobenzene (DNCB) and on lipopolysaccharide (LPS)-stimulated murine macrophages. BDB treatment (100 mg/kg) resulted in suppression of the development of AD symptoms compared with the control treatment (induction-only), as demonstrated by reduced immunoglobulin E levels in serum, smaller lymph nodes with reduced thickness and length, a decrease in ear edema, and reduced levels of inflammatory cell infiltration in the ears. In RAW 264.7 murine macrophages, BDB (12.5, 25, 50, and $100{\mu}M$) suppressed the production of interleukin-6, a proinflammatory cytokine, in a dose-dependent manner. BDB also had an inhibitory effect on the phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) and signal transducer and activator of transcription 1 (STAT1; Tyr 701), two major signaling molecules involved in cellular inflammation. Taken together, the results show that BDB treatment alleviates inflammatory responses in an atopic dermatitis mouse model and RAW 264.7 macrophages. These results suggest that BDB may be a useful therapeutic strategy for treating conditions involving allergic inflammation such as atopic dermatitis.

Anti-inflammatory Constituents of Robinia pseudoacacia Root Bark (아까시나무 뿌리껍질의 항염증활성물질)

  • Kang, Dong-Min;Park, Woo Sung;Kim, Hye-Jin;Jeong, Woo-Jin;Kang, Kwon Kyoo;Ahn, Mi-Jeong
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.1
    • /
    • pp.8-15
    • /
    • 2022
  • Robinia pseudoacacia L. (Leguminosae) is widely distributed in Asia, North America and Europe. The root bark has been traditionally used for hemostasis, arthritis and hypertension. Therefore, this study was conducted to identify the biological activity and the bioactive constituents of the root bark. We found that the methanol extract obtained from the root bark of R. pseudoacacia reduced the level of ROS and NO production in LPS-induced inflammation of RAW 264.7 cell line. Among the fractions, methylene chloride fraction showed the highest inhibitory activity against the inflammation. Seven constituents (1-7) were isolated from this fraction, and the chemical structures were determined to be medicarpin (1), (-)-vestitol (2), indole 3-carboxaldehyde (3), 3-acetylindole (4), liquiritigenin (5), 4(1H)-quinolone (6) and 8-methoxyononin (7). Among the isolates, medicarpin (1), (-)-vestitol (2), 3-acetylindole (4) and liquiritigenin (5) inhibited ROS and NO production in a dose-dependent manner. This is the first study to show the anti-inflammatory activity of the root bark of R. pseudoacacia, and it is suggested that the four constituents (1, 2, 4, and 5) could play a role in the biological activity.

Regulatory Effect of Scutellariae Radix on the Proinflammatory Cytokine Production and Abnormal T-Cell Activation in Vitro in Pristane-Induced Lupus Mice

  • Shin, Tae-Yong;Oh, Chan-Ho;Kim, Dae-Keun;Eun, Jae-Soon;Jeon, Hoon;Park, Jeong-Suk;Kim, Myoung-Soon;Yang, Jae-Heon;Chae, Byeong-Suk
    • Natural Product Sciences
    • /
    • v.13 no.3
    • /
    • pp.207-213
    • /
    • 2007
  • Scutellaria baicalensis is known as a herbal medicine with anti-inflammatory and anti-oxidative activities. However, effect of Scutellaria baicalensis on lupus pathogenesis that is characterized by overproduction of proinflammatory cytokines and abnormalities in regulation, function, and interaction of immune cells remains unclear. We investigated effects of Scutellariae radix methanol extract (SBMeOH) on the production of proinflammatory cytokines and abnormal activation of T cells in vitro in pristane-induced lupus BALB/c mice. These results demonstrated that SBMeOH significantly decreased the LPS-stimulated production of $TNF-{\alpha}$, IL-6, and IL-10 by splenic and peritoneal macrophages and IL-6 and IL-10 by splenocytes from pristane-induced lupus mice. SBMeOH significantly downregulated the Con A-stimulated overproduction of IL-6, IL-10, and $IFN-{\gamma}$ by splenocytes from pristane-induced lupus mice. Also, SBMeOH significantly attenuated the Con A-induced expression of CD4+ T cells and CD69+CD4+ T cells but not CD8+ T cells in pristane-induced lupus mice. Our findings indicate that SBMeOH may ameliorate lupus pathogenic inflammation and autoimmunity via downregulation of proinflammatory cytokine production and abnormal activation of T cells.

The Anti-oxidative and Anti-inflammatory Effect of Lonicera Japonica on Ulcerative Colitis Induced by Dextran Sulfate Sodium in Mice (금은화 추출물의 항산화, 항염증 효과가 Dextran Sulfate Sodium으로 유도된 생쥐의 궤양성 대장염에 미치는 영향)

  • Cha, Ho Yeol;Jeong, A Ram;Cheon, Jin Hong;Ahn, Sang Hyun;Park, Sun Young;Kim, Ki Bong
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.54-64
    • /
    • 2015
  • Objectives : This study was to investigate the anti-oxidative and anti-inflammatory effect of Lonicera japonica water extracts (LE) on Ulcerative Colitis Induced by DSS (Dextran Sulfate Sodium) in Mice. Methods : Colitis was induced by DSS in Balb/c mice. The sample group was divided into three. The mice in control group were not inflammation-induced. The pathological group was composed of untreated colitis elicited mice. The experimental group was administered Lonicera japonica water extracts (LE) after colitis elicitation. The effects on ulcerative colitis were evaluated the anti-oxidant effect, inhibition of COX-2 mRNA expression, the morphological change of colonic mucosa, decrease effect of HSP 70 and COX-2 in mucosa. Results : The SOD ability of LE was dose-dependently increased and the LPS-induced COX-2 mRNA expression of LE was dose-dependently decreased. LE showed the protective effects on DSS-induced experimental colitis. LE inhibited shortening of colon length, the hemorrhagic erosion in colonic mucosa. LE also showed the decrease effect for HSP70 and COX-2 in mucosa. Conclusions : The current results demonstrate the clinical utility of LE in traditional medicine and indicate the possible treatments for ulcerative colitis from natural products. Further investigations for exact mechanisms will be needed.

Effect of Water Extract of Peonia Suffruticosa and Prunus Percica on Anti-inflammation (목단피((牧丹皮).도인(桃仁) 배합(配合)이 항염증(抗炎症) 작용(作用)에 미치는 영향)

  • Kim, Young-Il;Lee, Sung-Jun;Huh, Jin;Lee, Tae-Hyung;Shin, Dong-Gean;Lee, Jae-Cheol;Shin, Yong-Seo;Yun, Young-Gab
    • Herbal Formula Science
    • /
    • v.18 no.1
    • /
    • pp.105-120
    • /
    • 2010
  • Paeonia Suffruticosa and Prunus Persica have been used as oriental medicine for removal of fever, alleviation of pain, an anti-phlogistic effect and removal of extravasated blood. However, it has been never shown the effects of these herbal medicines on anti-inflammatory processes. This experiment was performed to show how these herbs could act as anti-inflammatory medicines at cellular level. Anti-inflammation effects of water extracts from Paeonia Suffruticosa and Prunus Persica as well as their mixture have been investigated, and the results were follows; 1) each extract slightly suppressed the expression and production of inflammatory mediators and enzymes such as NO, iNOS, IL-$1{\beta}$, and TNF-$\alpha$ in lipopolysaccharid(LPS)-stimulated RAW264.7 cells and mouse primary peritoneal macrophages in a dose-dependent manner. These suppressive effects, however, were synergistically increased by their mixture. 2) Each extract of Paeonia Suffruticosa and Prunus Persica insignificantly suppressed the activation and activity of NF-${\kappa}B$ in LPS-stimulated RAW264.7 cells, which controls the expression of inflammatory mediators such as NO, iNOS, IL-$1{\beta}$, and TNF-$\alpha$. However, extract mixture of Paeonia Suffruticosa and Prunus Persica suppressed effectively the activation and activity of NF-${\kappa}B$. 3) Each of Paeonia Suffruticosa and Prunus Persica induced translocation of NF-${\kappa}B$ to the nucleus from the cytosol and DNA-binding activity of nuclear NF-${\kappa}B$ in LPS-activated RAW264.7 cells. The extract mixture of Paeonia Suffruticosa and Prunus Persica showed more significant suppression of the NF-${\kappa}B$ translocation and its DNA-binding activity, as compared to those of the each extract. These results suggest that the extract mixture of Paeonia Suffruticosa and Prunus Persica may affect different control mechanisms for NF-${\kappa}B$ activation and the expression and production of NF-${\kappa}B$-dependent inflammatory mediators, indicating that this extract mixture may be useful for treatment of inflammatory diseases.

Inhibition of Nitric Oxide Production by ladybug extracts(Harmonia axyridis) in LPS-activated BV-2 cells (무당벌레(Harmonia axyridis) 추출물에 의한 BV-2 세포주의 Nitric Oxide 생성 저해 활성)

  • Han Sang-Mi;Lee Sang-Han;Yun Chi-Young;Kang Seok-Woo;Lee Kyung-Gill;Kim Ik-Soo;Yun Eun-Young;Lee Pyeong-Jae;Kim Sun-Yeou;Hwang Jae-Sam
    • Korean journal of applied entomology
    • /
    • v.45 no.1 s.142
    • /
    • pp.31-36
    • /
    • 2006
  • Inflammation in the brain has known to be associated with the development of a various neurologiacal diseases. The hallmark of neuro-inflammation is the activation of microglia, brain macrophage. Pro-inflammatory compounds including nitric oxide(NO) are the main cause of neuro-degenerative disease such as Alzheimer's disease. In the study, we examined whether Harmonia axyridis extracts inhibit the NO production by a direct method using Griess reagent, western blotting and by RT-PCR(Reverse Transcription-Polymerase Chain Reactionin) the gene expression of inducible nitric oxide synthase(iNOS). Distilled water$(H_2O)$ and methanol(MeOH) extracts of H. axyridis inhibited the protein expression of TNF-a(Tumor Necrosis Factor) and IL-6(Interleukin) in LPS (Lipopolysaccharide) stimulated BV-2 cells at the concentration of 100 ng/ml. Incubation of BV-2 cells with the extracts of $H_2O$ of MeOH inhibited the LPS induced NO and iNOS protein. And this inhibition of iNOS protein is concordant with the inhibition of iNOS mRNA expression. These data suggested that H. axyridis extracts may play a crucial role in inhibiting the NO production.