• Title/Summary/Keyword: LPS-induced inflammation

Search Result 949, Processing Time 0.026 seconds

Anti-inflammatory Effects of 8α-hydroxy pinoresinol isolated from Nardostachys jatamansi on Lipopolysaccharide-induced Inflammatory Response in RAW 264.7 Cells. (LPS로 유도된 RAW 264.7 세포의 염증반응에서 감송향(甘松香)에서 추출한 8α-hydroxy pinoresinol의 항염증 효과)

  • Choi, Sun Bok;Park, Sung-Joo
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.1-6
    • /
    • 2016
  • Objectives : Nardostachys jatamansi (NJ) is a medicinal herb that has been reported in various traditional systems of medicine for its use in antispasmodic, a digestive stimulant, skin diseases. Previous studies have already reported that NJ effectively protects against inflammation. However, the active compound in NJ is unknown. Therefore, in the present study, we analyzed effects of a compound, 8α-hydroxy pinoresinol (HP), isolated from NJ against lipopolysaccharide (LPS) induced inflammation in RAW 264.7 cells.Methods : To examine the anti-inflammatory effect of HP against LPS, intraperitoneally pre-treat the HP (100, 200, 500 and 1,000 nM) 1 h prior to LPS challenges. LPS was stimulated with 500 ng/ml in RAW 264.7 cells. To identify the anti-inflammatory effect of HP, we measured inflammatory mediators such as inducible nitric oxide synthase (iNOS) and its derivative nitric oxide (NO), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2). Also we evaluated molecular mechanisms including mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-κB) activation by western blot.Results : The HP inhibited production of inflammatory mediators, such as iNOS and its derivative NO, COX-2 and PGE2 in LPS- induced inflammationin RAW 264.7 cells. Additionally, HP also inhibited activation of p38 pathway signaling but not extracellularsignal-regulatedkinase (ERK), c-jun NH2-terminal kinase (JNK), and NF-κB.Conclusion : Our results suggest that HP has anti-inflammatory functions through the dephosphorylation of p38 and HP can provide beneficial strategy for prevention and therapy of inflammation.

Anti-inflammatory Effect of Red Ginseng through Regulation of MAPK in Lipopolysaccharide-stimulated RAW264.7 (Lipopolysaccharide로 유도된 RAW264.7 세포에서 MAPK에 의한 홍삼추출물의 항염증 효과)

  • Shin, Ji-Su;Kim, Jong-Myoung;An, Won-Gun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.293-300
    • /
    • 2012
  • Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) are important inflammatory mediators implicated in pathogenesis of inflammation and certain types of human cancers. The present study was designed to determine whether Red Ginseng (RG) could modulate $I{\kappa}B$-kinase, iNOS and COX-2 gene expression and immune responses in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS). RG extract suppressed the expression of LPS-induced $I{\kappa}B$, iNOS, COX-2, and immune responses in a dose-dependent manner. It also showed an anti-inflammatory effect by inhibiting NF-${\kappa}B$ immune response induced by LPS treatment. Inhibitory effect of RG on LPS-induced inflammation was mediated by suppressed phosphorylation of ERK, JNK and p38 through the regulation of the mitogen-activated protein kinase (MAPK) pathway leading to a decreased production of NO, iNOS, COX-2 and NF-${\kappa}B$. The results implied the role of RG as an inflammation regulator and its possible application for curing inflammatory diseases.

Inhibitory effect of epigallocatechin from Camellia sinensis leaves against pro-inflammatory mediator release in macrophages

  • Cho, Jun-Hyo;Hong, Eun-Jin;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.199-205
    • /
    • 2017
  • To investigate the anti-inflammatory activity of natural products, we determined the anti-inflammatory activity of purified epigallocatechin (EGC) from Camellia sinensis leaves. In the present study, we found that EGC inhibited the production of proinflammatory mediators (IL-6, TNF-${\alpha}$, NO, and $PGE_2$) in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells. Suppression of IL-6 seems to be at least partly attributable to the inhibitory effect of EGC. TNF-${\alpha}$ is a major cytokine produced by LPS-induced macrophages, and they have a wide variety of biological functions including regulation of inflammation. The inhibition of IL-6 and TNF-${\alpha}$ production by EGC may downregulate the acute-phase response to LPS, thereby reducing LPS-induced inflammation. In addition to IL-6 and TNF-${\alpha}$, EGC effectively reduced the production of other key inflammatory mediators, including NO and $PGE_2$. The inhibitory effect of EGC on NO and $PGE_2$ production was supported by the suppression of inducible nitric oxide synthase and COX-2 at protein levels. These results support the traditional use of EGC in the alleviation of various inflammation-associated diseases and suggest that EGC might be useful in the development of new functional foods for inflammatory diseases.

Changes in Some Metabolites and Ovarian Response to Super-ovulation Treatment after the Induction of Inflammation in Sheep (면양에 있어서 염증유발후의 혈중대사물의 동태 그리고 그후의 과잉배란처치에 대한 난소반응)

  • Kweon Oh-Kyeong
    • Journal of Veterinary Clinics
    • /
    • v.5 no.1
    • /
    • pp.31-35
    • /
    • 1988
  • The effects of inflammation on the changes in some blood metabolites and ovarian response to super-ovulation treatment in sheep were investigated. Inflammation was induced artificially with LPS(Lipopoly-saccharide E. coli; 0.2mg/kg). Changes in the levels of NEFA, GOT, ${\gamma}$-GTP and body temperature after LPS injection were observed. Superovulation was carried out about 2 months after LPS injection. The body temperature, the levels of NEFA and GOT increased, and the level of total cholesterol decreased transiently. However, the level of ${\gamma}$-GTP did not change significantly. Superovulation results were not different between LPS injection and control groups. It was indicated that superovulation results did not decrease in the sheep which showed regular estrous cycle even after the induction of inflammation.

  • PDF

Effects of Extract Mixture (Yg-1) of Anti-Inflammatory Herbs on LPS-Induced Acute Inflammation in Macrophages and Rats (급성염증성 발열 모델에서의 항염증성 약재 혼합 추출물(YG-1)의 효과)

  • Song, In-Bong;Na, Ji-Young;Song, Kibbeum;Kim, Sokho;Lee, Ji-Hyun;Kwon, Young-Bae;Kim, Dae-Ki;Kim, Dae-Sung;Jo, Hyoung-Kwon;Kwon, Jungkee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.4
    • /
    • pp.497-505
    • /
    • 2015
  • Traditional herbs, such as Lonicera japonica, Arctii Fructus, and Scutellariae Radix have been used as traditional drug due to their anti-inflammatory and anti-oxidant activities. The aim of this study was to investigate the anti-inflammatory effects of extract mixture (YG-1) in a model of lipopolysaccharide (LPS)-induced acute inflammation in both macrophage (RAW 264.7) cells and Sprague-Dawley rats. YG-1 did not show specific cellular toxicity in RAW 264.7 cells until a concentration of $100{\mu}g/mL$. YG-1 reduced various markers related to inflammation such as IL-$1{\beta}$, COX-2, and iNOS caused by LPS in RAW 264.7 cells. Consistent with these results, YG-1 exerted significant anti-inflammatory effects in an acute inflammation rat model. Acute fever and high concentration of IL-$1{\beta}$ in serum induced by LPS were significantly reduced by YG-1. These results were similar to flubiprofen, a commercial anti-inflammatory and anti-febrile drug. Therefore, these results indicate that YG-1 has beneficial effects on LPS-induced acute inflammation and suggest that YG-1 can serve as an effective anti-inflammatory and anti-febrile drug.

The effects of Socheongryong-Tang on LPS-induced lung inflammation rats model (소청룡탕이 LPS로 유도된 폐손상 동물모델에 미치는 영향)

  • Jin, Bo-Ram;Choi, In Young;Hwang, Do Young;Ham, Seong-Ho;An, Hyo-Jin
    • The Korea Journal of Herbology
    • /
    • v.34 no.5
    • /
    • pp.21-28
    • /
    • 2019
  • Objectives : In present study, we investigated a therapeutic effect and optimum dose of Socheongryong-Tang (SCT) on LPS-induced lung inflammation rats model. Methods : Male Sprague-Dawley rats ($260{\pm}10g$) were divided into 12 groups : Group 1 included the normal rats, and Group 2-12 were administrated LPS by intranasal injection to induce experimental lung inflammation. After 1 day of LPS administration, Group 3-9 were treated with SCT ${\times}1/4$, ${\times}1/2$, ${\times}1$, ${\times}3$, ${\times}6$, ${\times}12$ or ${\times}18$, respectively. Group 10-12 (positive control) were treated with dexamethasone 1 mg/kg or acetylcystein 1.5 mg/kg or diclofenac sodium 0.4 mg/kg, respectively. After sacrifice, bronchoalveolar lavage fluid (BALF) was isolated. The levels of IL-$1{\beta}$, TNF-${\alpha}$, mucin glycoprotein 5AC (MUG5AC) were measured in BALF using enzyme-linked immunosorbent assay (ELISA). Results : LPS injected rats exhibited outstanding lung inflammation manifestations, including increased amount of total cells and neutrophil, and upregulated inflammatory cytokines level in BALF. However, the administration of SCT ${\times}1/4$, ${\times}1/2$ and ${\times}1$ decreased total cells and neutrophil, and suppressed the production of inflammatory cytokines, including $IL-1{\beta}$ and TNF-${\alpha}$, and MUG5AC in BALF. Notably, inhibitory effect of SCT ${\times}1/2$ and ${\times}1$ on the level of TNF-${\alpha}$ was markedly better than that of positive controls, dexamethasone and acetylcystein. Conclusions : Taken together, these results suggest that SCT ${\times}1/2$ and ${\times}1$ has therapeutic effects on LPS-induced lung inflammation rats model.

Inhibition of Lipopolysaccaride-induced Inducible Nitric Oxide (iNOS) mRNA Expression and Nitric Oxide Production by Higenamine in Murine Peritoneal Macrophages

  • Lee, Hoi-Young;Lee, Jang-Soon;Kim, Eun-Ju;Han, Jeung-Whan;Lee, Hyang-Woo;Kang, Young-Jin;Chang, Ki-Churl
    • Archives of Pharmacal Research
    • /
    • v.22 no.1
    • /
    • pp.55-59
    • /
    • 1999
  • Nitric oxide synthesized by inducible nitric oxide synthase (iNOS) has been implicated as a mediator of inflammation in rheumatic and autoimmune diseases. The effects of higenamine, a tetrahydroisoquinoline compound, on induction of NOS by bacterial lipopolysaccaride (LPS) were examined in murine peritoneal macrophages. LPS-induced nitrite/nitrate production was markedly inhibited by higenamine which at 0.01 mM, decreased nitrite/nitrate levels by $48.7{\pm}4.4%$This was comparable to the inhibition of LPS-induced nitrite/nitrate production by tetrandrin ($49.51{\pm}2.02%$). at the same concentration. Northern and Western blot analysis of iNOS expression demonstrated that iNOS expression was significantly attenuated following co-incubation of peritoneal macrophages with LPS (10 $\mu\textrm{g}$/m;; 18hrs) and higenamine (0.001, 0.,01 mM; 18hrs). These results suggest that higenamine can inhibit LPS-induced expression of iNOS mRNA in murine peritoneal macrophages. The clinical implications of these findings remain to be established.

  • PDF

Ga-mi-Yuk-Mi-Jihwang-Tang Ameliorates LPS-injected acute Liver Injury via Regulation of Sirtuin6 in Inflammasome Triggered-pyroptosis Using Mice Model

  • 임수아;조명래;김태수;성수희;김보람;최경민;정진우
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.114-114
    • /
    • 2022
  • Excessive endogenous endotoxin, especially lipopolysaccharide (LPS) reflux from gastrointestinal (GI) tract to the liver tissue is one of the most serious reasons of severe and acute liver injury which is mainly mediated by Kupffer cell activations. However, there is no clear molecular clues to explain the exact pathophysiological mechanism and effective drugs available till nowadays. We aimed to comprehend the pathophysiological features of LPS-induced liver injury and evaluate the efficacies of potential therapeutic drug, Ga-mi-Yuk-Mi-Jihwang-Tang (GYM), which is composed of herbal plants. GYM remarkably caused to normalize hepatic inflammation and oxidations against LPS-induced liver injury by evidence of serum liver enzymes, histopathological analysis, both hepatic protein and gene expression levels of pro-inflammatory cytokines, nitric oxide levels, and hepatic tissue levels of reactive oxygen species (ROS) levels, malondialdehyde (MDA), and 4-hydroxyneoneal, respectively. To assess molecular events in the hepatic tissue, we further found hepatic Sirtuin6 (Sirt6) levels were considerably depleted by LPS injection with aberrant alterations of Nrf2/HO-1 signaling pathways, whereas administration with GYM notably exerted to normalize these abnormalities. Our results exhibited that GYM would be one of target drug to diminish hepatic inflammation as well as oxidative stress by regulation of hepatic Sirt6 levels.

  • PDF

The anti-inflammatory effect of Taraxacum coreanum on lipopolysaccharide induced inflammatory response on RAW 264.7 cells (LPS로 유도한 RAW 264.7 세포의 염증반응에서 흰민들레의 항염증 효과)

  • Kim, Min-Jun;Bae, Gi-Sang;Choi, Sun Bok;Jo, Il-Joo;Kim, Dong-Goo;Shin, Joon-Yeon;Lee, Sung-Kon;Kim, Myoung-Jin;Park, Sung-Joo;Song, Ho-Joon
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.21-26
    • /
    • 2014
  • Objectives : Taraxacum coreanum (TC) have been used as a traditional medicine to treat inflammatory diseases and anti-oxidant effect in Korea. However, the anti-inflammatory effect of TC water extract on lipopolysaccharide (LPS)-induced inflammation is not well-known. Therefore, this study was performed to identify the anti-inflammatory effect of TC on LPS induced inflammatory. Methods : RAW 264.7 cells were treated with 500 ng/mL of LPS. Water extracts of TC (0.1, 0.25, 0.5 mg/ml) was treated 1 h prior to LPS. Cell viability was measured by MTT assay. Levels of nitric oxide (NO) were measured with Griess reagent and pro-inflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (real-time PCR). We also examined molecular mechanisms such as mitogen-activated protein kinases (MAPKs) and nuclear factor-B ($NF-{\kappa}B$) activation by western blot. Results : Water Extract from TC itself did not have any cytotoxic effect in RAW 264.7 cells. TC treatment inhibited the production of NO production, and pro-inflamamtory cytokines such as interleukin (IL)-6 and $IL-1{\beta}$ on protein and mRNA levels. In addition, TC treatment inhibited the LPS-induced activation of MAPKs such as extracellular signal-regulated kinase1/2 (ERK1/2), p38 kinases (p38), c-Jun $NH_2$-terminal kinase (JNK) and $NF-{\kappa}B$. Conclusions : In summary, our result suggest that treatment of TC could reduce the LPS-induced inflammation. Thereby, TC could be used as a protective agent against inflammation. Also, this study could give a clinical basis that TC could be a drug or agent to prevent inflammation.

Inhibition of Experimental Systemic Inflammation (Septic Inflammation) and Chronic Bronchitis by New Phytoformula BL Containing Broussonetia papyrifera and Lonicera japonica

  • Ko, Hyun Jeong;Kwon, Oh Song;Jin, Jeong Ho;Son, Kun Ho;Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.66-71
    • /
    • 2013
  • Broussonetia papyrifera and Lonicera japonica have long been used in the treatment of inflammatory disorders in Chinese medicine, especially respiratory inflammation. Previously, a new phytoformula (BL) containing B. papyrifera and L. japonica was found to exert strong anti-inflammatory activity against several animal models of inflammation, especially against an animal model of acute bronchitis. In the present investigation, the effects of BL on animal models of septic inflammation and chronic bronchitis are examined. Against lipopolysaccharide (LPS)-induced septic inflammation in mice, BL (200-400 mg/kg) reduced the induction of some important proinflammatory cytokines. At 1 h after LPS treatment, BL was found to considerably inhibit TNF-${\alpha}$ production when measured by cytokine array. At 3 h after LPS treatment, BL inhibited the induction of several proinflammatory cytokines, including IFN-${\gamma}$ and IL-$1{\beta}$, although dexamethasone, which was used as a reference, showed a higher inhibitory action on these biomarkers. Against chronic bronchitis induced by LPS/elastase instillation in rats for 4 weeks, BL (200-400 mg/kg/day) significantly inhibited cell recruitment in bronchoalveolar lavage fluid. Furthermore, BL considerably reduced lung injury, as revealed by histological observation. Taken together, these results indicate that BL may have a potential to treat systemic septic inflammation as well as chronic bronchitis.