• Title/Summary/Keyword: LPS-induced

Search Result 2,120, Processing Time 0.033 seconds

Anti-Inflammatory Efficacy of Human-Derived Streptococcus salivarius on Periodontopathogen-Induced Inflammation

  • Dong-Heon Baek;Sung-Hoon Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.998-1005
    • /
    • 2023
  • Streptococcus salivarius is a beneficial bacterium in oral cavity, and some strains of this bacterium are known to be probiotics. The purpose of this study was to investigate the anti-inflammatory effect and mechanism of S. salivarius G7 lipoteichoic acid (LTA) on lipopolysaccharide (LPS) and LTA of periodontopathogens. The surface molecules of S. salivarius G7 was extracted, and single- or co-treated on human monocytic cells with LPS and LTA of periodontopathogens. The induction of cytokine expression was evaluated by real-time PCR and ELISA. After labeling fluorescence on LPS and LTA of periodontopathogens, it was co-treated with S. salivarius LTA to the cell. The bound LPS and LTA were measured by a flow cytometer. Also, the biding assay of the LPS and LTA to CD14 and LPS binding protein (LBP) was performed. The surface molecules of S. salivarius G7 did not induce the expression of inflammatory cytokines, and S. salivarius G7 LTA inhibited the inflammatory cytokines induced by LPS and LTA of periodontopathogens. S. salivarius G7 LTA inhibited the binding of its LPS and LTA to cells. Also, S. salivarius G7 LTA blocked the binding of its LPS and LTA to CD14 and LBP. S. salivarius G7 has an inhibitory effect on inflammation induced by LPS or LTA of periodontopathogens, and may be a candidate probiotics for prevention of periodontitis.

Effects of Pretreatment of Serotonin Synthesis Inhibitor p-chlorophenylalanine on Lipopolysaccharide-induced Anorexia in Rats

  • Park, So-Young;Kim, Byung-Suck;Back, Seoung-Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.133-138
    • /
    • 2001
  • In the present study, we investigated the effect of pretreatment of p-chlorophenylalanine (PCPA), inhibitor of serotonin synthesis, on lipopolysaccharide (LPS)-induced anorexia in rats. First of all, effects of PCPA injection on food intake and body weight in rats were investigated. During 4 days of PCPA injection (300 mg/kg BW once a day), food intake was decreased by 33% and daily gain in body weight was inhibited compared with controls. Twenty-four hours after last PCPA injection, food intake and gain in body weight returned toward almost normal. Pair-feeding to PCPA (PCPAP) injection revealed that body weight of rats in PCPA group was not different from rats in PCPAP groups. To quantify the effects of LPS on food intake and body weight, we administered varying doses $(10,\;100,\;500\;{\mu}g/kg\;BW)$ of LPS to rats. LPS induced a reduction of food intake and weight loss in a dose dependent manner compared with controls. To evaluate the effects of PCPA pretreatment on LPS injection, rats were treated with PCPA for 4 days (300 mg/kg BW once a day), which was followed by LPS injection for 2 days $(500\;{\mu}g/kg\;BW\;once\;a\;day)$ (PCPA+LPS group), while rats in LPS group had injections with normal saline instead of PCPA for 4 days, which was followed by LPS administration. Rats in control group received 0.9% NaCl for 6 days. LPS decreased food intake by 80% and inhibited gain in body weight, while PCPA pretreated rats showed normalized food intake and gain in weight during the days of LPS injections compared with controls. In conclusion, pretreatment of PCPA prevented LPS-induced anorexia.

  • PDF

Anti-inflammatory Effects of Pentoxifylline and Neutrophil Elastase Inhibitor on Lipopolysaccharide-Induced Acute Lung Injury In Vitro (In Vitro 내독소 유도성 급성 폐손상에서 Pentoxifylline과 Neutrophil Elastase Inhibitor의 항염효과)

  • Kim, Young-Kyoon;Kim, Seung-Joon;Park, Yong-Keun;Kim, Seok-Chan;Kim, Kwan-Hyoung;Moon, Hwa-Sik;Song, Jeong-Sup;Park, Sung-Hak;Kim, Sang-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.6
    • /
    • pp.691-702
    • /
    • 2000
  • Background : Acute lung injury (ALI) is a commonly encountered respiratory disease and its prognosis is poor when the treatment is not provided promptly and properly. However no specific pharmacologic treatment is currently available for ALI, although recently several supportive drugs have been under scrutiny. We studied anti-inflammatory effects of pentoxifylline (PF), a methylated xanthine, and ONO-5046, a synthetic neutrophil elastase inhibitor on lipopolysaccharide (LPS)-induced ALI in vitro. Methods : To establish an in vitro model of LPS-induced ALI, primary rat alveolar macrophages and peripheral neutrophils in various ratios (1:0, 5:1, 1:1, 1:5, 0:1) were co-cultured with transformed rat alveolar epithelial cells (L2 cell line) or vascular endothelial cells (IP2-E4 cell line) under LPS stimulation. Each experiment was divided into five groups-control, LPS, LPS+PF, LPS+ONO, and LPS+PF+ONO. We compared LPS-induced superoxide anion productions from primary rat alveolar macrophages and peripheral neutrophils in various ratios, and the resultant cytotoxicity on L2 cells or IP2-E4 cells between groups. In addition we also compared the productions of tumor necrosis factor (TNF)-$\alpha$ interleukin (IL)-$1{\beta}$, monocyte chemotactic protein(MCP)-1, IL-6, and IL-10 as well as mRNA expressions of TNF-$\alpha$ inducible nitric oxide synthetase(iNOS), and MCP-1 from LPS-stimulated primary rat alveolar macrophages between groups. Results : (1) PF and ONO-5046 in each or both showed a trend to suppress LPS-induced superoxide anion productions from primary rat alveolar macrophages and peripheral neutrophils regardless of their ratio, except for the LPS+PF+ONO group with the 1:5 ratio, although statistical significance was limited to a few selected experimental conditions. (2) PF and ONO-5046 in each or both showed a trend to prevent IP2-E4 cells from LPS-induced cytotoxicity by primary rat alveolar macrophages and peripheral neutrophils regardless their ratio, although statistical significance was limited to a few selected experimental conditions. the effects of PF and/or ONO-5046 on LPS-induced L2 cell cytotoxicity varied according to experimental conditions. (3) PF showed a trend to inhibit LPS-induced productions of INF-$\alpha$ MCP-1, and IL-10 from primary rat alveolar macrophages. ONO-5046 alone didnot affect the LPS-induced productions of proinflammatory cytokines from primary rat alveolar macrophages but the combination of PF and ONO-5046 showed a trend to suppress LPS-induced productions of INF-$\alpha$ and IL-10 PF and ONO-5046 in each or both showed a trend to increase LPS-induced IL-$\beta$ and IL-6 productions from primary rat alveolar macrophages. (4) PF and ONO-5046 in each or both showed a trend to attenuate LPS-induced mRNA expressions of TNF-$\alpha$ and MCP-1 from primary rat alveolar macrophages but at the same time showed a trend increase iNOS mRNA expression. Conclusion : These results suggest that PF and ONO-5046 may play a role in attenuating inflammation in LPS-induced ALI and that further study is needed to use these drugs as a new supportive therapeutic strategy for ALI.

  • PDF

Inhibitory Effect of Mix proportion of Root of Scutellaria baicalensis and Coptis chinensis on LPS-induced type-I interferon Production in RAW264.7 Cells (LPS로 자극한 RAW267.4 세포에서 황금(黃芩), 황련(黃連) 배합 비율에 따른 TYPE-1 interferon 억제효과)

  • Kook, Yoon-Bum
    • Herbal Formula Science
    • /
    • v.16 no.2
    • /
    • pp.155-162
    • /
    • 2008
  • Objectives : The present study was designed to investigate corelation between mix proportion of Scutellaria baicalensis (SB) and Coptis chinensis (CC) on lipopolysaccharide (LPS)-induced TYPE-1 interferon production. Methods : I examined TYPE-1 interferon, interferon regulating factor (IRF)-1,7 and interleukin(IL)-10 production on LPS-induced RAW264.7 cells to evaluate inhibitory effect of mix proportion of SB and CC using real time PCR. Results : Mixture of SB and CC regulated TYPE-1 interferon and IRF-1,7 mRNA expression with SB dose dependent manner, while maintained IL-10 mRNA expression on LPS-induced RAW264.7 cells. Conclusion : In mixture of SB and CC, SB plays a key role in reducing TYPE-1 interferon through inactivation IRF-1,7. Furthermore mixture of SB and CC maintained IL-10 mRNA level. Collectively, this results suggest that SB confer beneficial effects in autoimmune diseases clinically.

  • PDF

Hepatic Metabolism of Sulfur Amino Acids During Septic Shock (패혈성 쇼크에서 간의 유황함유 아미노산 대사)

  • Kang, Keon-Wook;Kim, Sang-Kyum
    • YAKHAK HOEJI
    • /
    • v.51 no.6
    • /
    • pp.383-388
    • /
    • 2007
  • It has been reported that sulfur-containing intermediates or products in the transsulfuration pathway including S-adenosylmethionine, 5'-methylthioadenosine, glutathione and taurine can prevent liver injury mediated by inflammation response induced by lipopolysaccharide (LPS) treatment. The present study examines the modulation of hepatic metabolism of sulfur amino acid in a model of acute sepsis induced by LPS treatment (5 mg/kg, iv). Serum TNF-alpha and hepatotoxic parameters were significantly increased in rats treated with LPS, indicating that LPS results in sepsis at the doses used in this study. LPS also induced oxidative stress determined by increases in malondialdehyde levels and decreases in total oxy-radical scavenging capacities. Hepatic methionine and glutathione concentrations were decreased, but S-adenosylho-mocysteine, cystathionine, cysteine, hypotaurine and taurine concentrations were increased. Hepatic protein expression of methionine adenosyltransferase, cystathionine beta-synthase and cysteine dioxygenase were induced, but gamma-glutamylcysteine ligase catalytic subunit levels were decreased. The results show that sepsis activates transsulfuration pathway from methionine to cysteine, suggesting an increased requirement for methionine during sepsis.

The Nuclear Orphan Receptor NR4A1 is Involved in the Apoptotic Pathway Induced by LPS and Simvastatin in RAW 264.7 Macrophages

  • Kim, Yong Chan;Song, Seok Bean;Lee, Sang Kyu;Park, Sang Min;Kim, Young Sang
    • IMMUNE NETWORK
    • /
    • v.14 no.2
    • /
    • pp.116-122
    • /
    • 2014
  • Macrophage death plays a role in several physiological and inflammatory pathologies such as sepsis and arthritis. In our previous work, we showed that simvastatin triggers cell death in LPS-activated RAW 264.7 mouse macrophage cells through both caspase-dependent and independent apoptotic pathways. Here, we show that the nuclear orphan receptor NR4A1 is involved in a caspase-independent apoptotic process induced by LPS and simvastatin. Simvastatin-induced NR4A1 expression in RAW 264.7 macrophages and ectopic expression of a dominant-negative mutant form of NR4A1 effectively suppressed both DNA fragmentation and the disruption of mitochondrial membrane potential (MMP) during LPS- and simvastatin-induced apoptosis. Furthermore, apoptosis was accompanied by Bcl-2-associated X protein (Bax) translocation to the mitochondria. Our findings suggest that NR4A1 expression and mitochondrial translocation of Bax are related to simvastatin-induced apoptosis in LPS-activated RAW 264.7 macrophages.

Kamgil-Tang attenuates lipopolysaccharide-induced NF-${\kappa}$B activation in RAW 264.7 cell and acute lung injury in rats

  • Park, Dong-Il;Kim, Do-Hyun;Choi, Byung-Tae
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.55-60
    • /
    • 2000
  • We examined the effects of Kamgil-Tang on the process of lipopolysaccharide (LPS)-induced unclear factor (NF)-${\kappa}$ Bp65 and inhibitory (I)-${\kappa}$ B${\alpha}$ alteration in RAW 264.7 cell and acute lung injury in rats. Immunoblot analysis showed that LPS-induced degradation of I-${\kappa}$ B${\alpha}$ in RAW 264.7 was inhibited by pretreatment of Kamgil-Tang. The total cells of bronchoalveolar lavage fluid by LPS challenge markedly decreased in the Kamgil-Tang pretreatment rats. Kamgil-Tang pretreatment caused also a decline in neutrophils infiltration into interstitium of the lung. In the alveolar macrophages and neutrophils, decreased NF-${\kappa}$ Bp65 and inducible nitric oxide synthase and increased I-${\kappa}$ B${\alpha}$ immunoreaction were detected in Kamgil-Tang pretreated rats compared with LPS alone treated ones. It may be concluded that Kamgil-Tang attenuates the development of LPS-induced inflammation by reduction of NF-${\kappa}$ Bp65 activation and neutrophil-mediated acute lung injury. Kamgil-Tang would be useful as a therapeutic agent for endotoxin-induced lung disease.

  • PDF

Anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue in lipopolysaccharide-stimulated RAW 264.7 macrophages and in vivo zebrafish model

  • Ko, Seok-Chun;Jeon, You-Jin
    • Nutrition Research and Practice
    • /
    • v.9 no.3
    • /
    • pp.219-226
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: In this study, potential anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue was assessed via nitric oxide (NO) production in lipopolysaccahride (LPS) induced RAW 264.7 macrophages and in vivo zebrafish model. MATERIALS/METHODS: We investigated the ability of enzymatic hydrolysates from Styela clava flesh tissue to inhibit LPS-induced expression of pro-inflammatory mediators in RAW 264.7 macrophages, and the molecular mechanism through which this inhibition occurred. In addition, we evaluated anti-inflammatory effect of enzymatic hydrolysates against a LPS-exposed in in vivo zebrafish model. RESULTS: Among the enzymatic hydrolysates, Protamex-proteolytic hydrolysate exhibited the highest NO inhibitory effect and was fractionated into three ranges of molecular weight by using ultrafiltration (UF) membranes (MWCO 5 kDa and 10 kDa). The above 10 kDa fraction down-regulated LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), thereby reducing production of NO and prostaglandin $E_2$ ($PGE_2$) in LPS-activated RAW 264.7 macrophages. The above 10 kDa fraction suppressed LPS-induced production of pro-inflammatory cytokines, including interleukin $(IL)-1{\beta}$, IL-6, and tumor necrosis factor $(TNF)-{\alpha}$. In addition, the above 10 kDa fraction inhibited LPS-induced phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), and p38. Furthermore, NO production in live zebrafish induced by LPS was reduced by addition of the above 10 kDa fraction from S. clava enzymatic hydrolysate. CONCLUSION: The results of this study suggested that hydrolysates derived from S. clava flesh tissue would be new anti-inflammation materials in functional resources.

Anti-inflammatory effect of Lonicera caerulea through ATF3 and Nrf2/HO-1 Activation in LPS-stimulated RAW264.7 Cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.65-65
    • /
    • 2019
  • In this study, we evaluated the anti-inflammatory effect of extracts of leaves (LCLE) and branches (LCBE) from L. caerulea in LPS-stimulated RAW264.7 cells. Inhibitory effect of LCLE and LCBE against LPS-induced overproduction of NO, iNOS and $IL-1{\beta}$ was higher than LCFE. Furthermore, LCLE and LCBE significantly inhibited the overexpression of COX-2, IL-6 and $TNF-{\alpha}$ in LPS-stimulated RAW264.7 cells. LCLE and LCBE did not inhibited LPS-induced degradation of $I{\kappa}B-{\alpha}$, but blocked the nuclear accumulation of p65. LCLE did not inhibited LPS-induced phosphorylation of ERK1/2 and p38, while LCBE significantly attenuated phosphorylation level of p38. LCLE and LCBE increased HO-1 protein level and decrease of iNOS and $IL-1{\beta}$ expression by LCLE and LCBE was inhibited by HO-1 knockdown. The inhibition of p38 by SB203580 and ROS by NAC blocked HO-1 expression by LCLE and LCBE. LCLE and LCBE increased p38 phosphorylation and the inhibition of ROS by NAC blocked p38 phosphorylation LCLE and LCBE. LCLE and LCBE induced nuclear accumulation of Nrf2, but this was significantly reversed by the inhibition of p38 and ROS. In addition, LCLE and LCBE increased ATF3 expression and decrease of iNOS and $IL-1{\beta}$ expression by LCLE and LCBE was inhibited by ATF3 knockdown. Collectively, LCLE and LCBE inhibited LPS-induced $NF-{\kappa}B$ activation by blocking p65 nuclear accumulation, increased HO-1 expression by ROS/p38/Nrf2 activation, and increased ATF3 expression. Furthermore, LCBE inhibited LPS-induced p38 phosphorylation.

  • PDF

Effect of Water Extract of Aconiti Lateralis Preparata Radix on Lung Injury in LPS-induced Septic C57BL6 Mice (부자 추출물이 LPS로 유도된 C57BL6 마우스의 패혈증 연관 급성 폐 손상에 미치는 영향)

  • In-Seung Lee;Mina Boo;Jae Ouk Sim;Seung-Ho Baek;Jinbong Park
    • Journal of Convergence Korean Medicine
    • /
    • v.4 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • Objectives: TSepsis and subsequent acute lung injury (ALI) is a critical state of health caused by infection or endotoxins. This study was conducted to evaluate the effect of Water Extract of Aconiti Lateralis Preparata Radix (AR) on lipopolysaccharide (LPS)-induced sepsis in C57BL/6 mice. Methods: Male C57BL/6 mice were intraperitoneally injected with LPS to induce sepsis and ALI. AR was orally fed twice at 30 min and 180 min after LPS injection. At 24 h post injection, mice were sacrificed, bronchoalveolar lavage fluid (BALF) and blood was collected, and lung tissue was harvested. Hematoxylin and eosin staining was performed in lung tissues, wet/dry ratio of the lung tissue was measured, and the serum cytokine and chemokine levels were analyzed. Results: AR revoked the LPS-induced pathological changes in lung tissues, such as abnormal histological structures, immune cell infiltration and lung edema. Also, AR suppressed the neutrophil infiltration into the lung which was greatly increased by LPS injection based on the cell content of collected BALF. Serum cytokines and chemokines were measured, and AR reversed the LPS-induced increase of cytokines such as interleukin 1 beta, interleukin 6, tumor necrosis factor alpha and chemokines including C-X-C motif chemokine ligand 1 and 2. Conclusion: TAR showed a protective effect in the pathological progress of LPS-induced ALI. Especially, AR suppressed lung edema and infiltration of neutrophils by inhibiting cytokine and chemokine expressions. Such results demonstrate the potential of AR as a therapeutic agent for sepsis and sepsis-induced ALI.