• Title/Summary/Keyword: LPS-induced

Search Result 2,130, Processing Time 0.034 seconds

Effects of Root of Liriope Spicata on LPS-induced Lung Injury (맥문동이 LPS로 유도된 폐손상에 미치는 영향)

  • Lee, Eung-Seok;Yang, Soo-Young;Kim, Min-Hee;NamGung, Uk;Park, Yang-Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.641-649
    • /
    • 2011
  • This study was purposed to evaluate the effects of root of Liriope spicata (RLS) on LPS-induced COPD (chronic obstructive pulmonary disease) model. The extract of RLS was treated to A549 cells and LPS-induced COPD mice model. Then, various parameters such as cell-based cyto-protective activity and histopathological finding were analyzed. RLS showed a protective effect on LPS-induced cytotoxicity in A549 cells. This effect was correlated with analysis for caspase 3 levels, protein level of cyclin B1, Cdc2, and phospho-Erk1/2, and gene expression of TNF-${\alpha}$ and IL-$1{\beta}$ in A549 cells. RLS treatment also revealed the protective effect on LPS-induced lung injury in COPD mice model. This effect was evidenced via histopathological finding including immunofluence stains against caspase 3, and protein level of cyclin B1, Cdc2, and Erk1/2 in lung tissue. These data suggest that RLS has a pharmaceutical properties on lung injury. This study would provide an scientific evidence for the efficacy of RLS for clinical application to patients with COPD.

The anti-inflammatory effect of Portulaca oleracea 70% EtOH Extracts on lipopolysaccharide-induced inflammatory response in RAW 264.7 cells (LPS로 유도한 RAW 264.7 세포의 염증반응에서 마치현(馬齒莧) 70% 에탄올 추출물의 항염증 효과)

  • Seo, Sang-Wan
    • The Korea Journal of Herbology
    • /
    • v.30 no.6
    • /
    • pp.33-38
    • /
    • 2015
  • Objectives : Portulaca oleracea (PO) have been used as a traditional medicine to treat inflammatory diseases in Korea. However, the anti-inflammatory effect of PO ethanol extract on lipopolysaccharide (LPS)-induced inflammation is not well-known. Therefore, this study was performed to identify the anti-inflammatory effect of PO on LPS induced inflammatory.Methods : Identification of PO was conducted by comparison with purified standards by HPLC. To measure out the cytotoxicity of PO, author performed the MTT assay. To evaluate the anti-inflammatory effects of PO, author examined the inflammatory mediators such as nitric oxide (NO) and pro-inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin, (IL)-1β and IL-6) on RAW 264.7 cells. Author also examined molecular mechanisms such as mitogen-activated protein kinases (MAPKs) and nuclear factor-B (NF-κB) activation by western blot.Results : Three major components (peaks 1, 2, 3) were detected in both varieties and peak 1 was characterized as caffeic acid, peak 2 as p-coumaric acid, and peak 3 as ferulic acid by comparison of chromatographic properties with authentic standards. Extract from PO itself did not have any cytotoxic effect in RAW 264.7 cells. PO inhibited LPS-induced productions of inflammatory mediators such as NO and pro-inflammatory cytokines in RAW 264.7cells. In addition, PO inhibited the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2), c-Jun NH2-terminal kinase (JNK) and NF-κB activation in RAW 264.7 cells.Conclusions : Above experiment data can be an important indicator for the identification of PO and this study suggest that treatment of PO could reduce the LPS-induced inflammation. Thereby, PO could be used as a protective agent against inflammation.

Experimental Study of Hwangginaetak-san on Anti-inflammatory Effect (黃기內托散의 소염 작용에 관한 실험적 연구)

  • Hong, Sung-Jin;Sim, Seug-Yong;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.17 no.2
    • /
    • pp.1-11
    • /
    • 2004
  • Objective: Chronic otitis media is an inflammation and infection of the middle ear which is persistent. Chronic otitis media occurs when the eustachian tube becomes blocked repeatedly, multiple infections, ear trauma, or swelling of the adenoids. A chronic ear may be the result of an acute ear infection that does not clear completely, or the result of recurrent ear infections. A chronic ear infection may be more destructive than an acute ear infection because its effects are prolonged, and it may cause permanent damage to the ear. Methods : Experimental animals made use of 4-5 weeks age(weight 20-25g) ICR(male)mouse. In the breeding farm, the lighting time was controlled from 7:00 am until 7:00 pm, the temperature was controlled within $22{\pm}0.5{\circ}$ and water and food were not limited. The extracts which were extracted from Hwangginaetak-san devided low dose group( 1.0g/kg-HN) and high dose group(3.0g/kg-HN), they were intragastrically administered to the mouse of sample A and sample B prior to LPS I.P injection. Compared with inflammation induced group which were induced by LPS, we measured the WBC count, IL-6 level in plasma and TNF-${\alpha}$ level in plasma. Results: 1. Hwangginaetak-san decreased WBC count in inflammatory reaction induced by LPS 2. Hwangginaetak-san decreased IL-6 level in inflammatory reaction induced by LPS. 3. Hwangginaetak-san didn't decreased TNF-${\alpha}$ level in inflammatory reaction induced by LPS Conclusion: According to above results, Hwangginaetak-san was improved its suppression effect to the inflammatory reaction through WBC count and IL-6 level. So Hwangginaetak-san is considered to be used for treatment of chronic otitis media by controlling the WBC count and IL-6 level in plasma.

  • PDF

Effects of Red Ginseng-Ejung-tang on Nitric Oxide and Hydrogen Peroxide Production in LPS-induced Mouse Macrophages RAW 264.7 (홍삼이중탕(紅蔘理中湯)이 LPS로 유발된 마우스 대식세포 RAW 264.7의 nitric oxide 및 hydrogen peroxide 생성에 미치는 영향)

  • Lee, Ji-Young;Park, Wan-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.294-299
    • /
    • 2011
  • The purpose of this study is to investigate effects of Red Ginseng-Ejung-tang (RE) on nitric oxide (NO) and hydrogen peroxide production in RAW 264.7 mouse macrophages induced by lipopolysaccharide (LPS). Cell viability was measured by modified MTT assay. NO production was measured by Griess reagent assay. Hydrogen peroxide production was measured by dihydrorhodamine 123 (DHR) assay. RE did not show cell toxicity against RAW 264.7 for 24 hr incubation at the concentrations of 10, 25, 50, 100, and $200{\mu}g/mL$ in RAW 264.7. RE significantly inhibited NO production for 24 hr incubation at the concentrations of 10, 25, 50, and $100{\mu}g/mL$ in RAW 264.7 (P < 0.05). RE significantly inhibited the LPS-induced production of NO for 24 hr incubation at the concentrations of 10, 25, 50, and $100{\mu}g/mL$ in RAW 264.7 (P < 0.05). RE significantly inhibited the LPS-induced production of hydrogen peroxide for 16, 24, 40, 48, 64, and 72 hr incubation at the concentrations of 50, 100, and $200{\mu}g/mL$ in RAW 264.7 (P < 0.05). These results suggest that RE has anti-inflammatory property related with its inhibition of NO and hydrogen peroxide production in LPS-induced macrophages.

MiR-30a-5p and miR-153-3p regulate LPS-induced neuroinflammatory response and neuronal apoptosis by targeting NeuroD1

  • Choi, Hye-Rim;Ha, Ji Sun;Kim, Eun-A;Cho, Sung-Woo;Yang, Seung-Ju
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.447-452
    • /
    • 2022
  • Neurogenic differentiation 1 (NeuroD1) is an essential transcription factor for neuronal differentiation, maturation, and survival, and is associated with inflammation in lipopolysaccharide (LPS)-induced glial cells; however, the concrete mechanisms are still ambiguous. Therefore, we investigated whether NeuroD1-targeting miRNAs affect inflammation and neuronal apoptosis, as well as the underlying mechanism. First, we confirmed that miR-30a-5p and miR-153-3p, which target NeuroD1, reduced NeuroD1 expression in microglia and astrocytes. In LPS-induced microglia, miR-30a-5p and miR-153-3p suppressed pro-inflammatory cytokines, reactive oxygen species, the phosphorylation of c-Jun N-terminal kinase, extracellular-signal-regulated kinase (ERK), and p38, and the expression of cyclooxygenase and inducible nitric oxide synthase (iNOS) via the NF-κB pathway. Moreover, miR-30a-5p and miR-153-3p inhibited the expression of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasomes, NLRP3, cleaved caspase-1, and IL-1β, which are involved in the innate immune response. In LPS-induced astrocytes, miR-30a-5p and miR-153-3p reduced ERK phosphorylation and iNOS expression via the STAT-3 pathway. Notably, miR-30a-5p exerted greater anti-inflammatory effects than miR-153-3p. Together, these results indicate that miR-30a-5p and miR-153-3p inhibit MAPK/NF-κB pathway in microglia as well as ERK/STAT-3 pathway in astrocytes to reduce LPS-induced neuronal apoptosis. This study highlights the importance of NeuroD1 in microglia and astrocytes neuroinflammation and suggests that it can be regulated by miR-30a-5p and miR-153-3p.

Comparison of Anti-inflammatory effects between Artemisia capillaris and Artemisia iwayomogi by extraction solvents (인진호(茵蔯蒿)와 한인진(韓茵蔯)의 추출용매별 항염증 효능 비교)

  • Noh, Dongjin;Choi, Jin Gyu;Hong, Soon-Sun;Oh, Myung Sook
    • The Korea Journal of Herbology
    • /
    • v.33 no.3
    • /
    • pp.55-61
    • /
    • 2018
  • Objectives : Artemisia capillaris Thunberg (AC) and Artemisia iwayomogi Kitamura (AI) have been used without distinguishment since ancient times due to similar appearance. In this study, we compared the inhibitory effects of AC and AI on the expression of inflammatory cytokines induced by lipopolysaccharide (LPS) in murine macrophages. Methods : AC and AI were extracted by reflux with distilled water (DW) and 70% ethanol (EtOH). We investigated the inhibitory effects of AC and AI on the expression of nitric oxide (NO), inducible NO synthase (iNOS) and tumor necrosis $factor-{\alpha}$($TNF-{\alpha}$) induced by LPS in macrophages. Results : Firstly, yield of the samples was higher in order of Artemisia iwayomogi DW Extract (AID), Artemisia iwayomogi 70% EtOH Extract (AIE), Artemisia capillaris DW Extract (ACD) and Artemisia capillaris 70% EtOH Extract (ACE). All of the samples were not toxic in macrophages. The inhibitory effect of the samples on LPS-induced NO expression was stronger in the order of AIE, ACE, AID and ACD. The inhibitory effect of the samples on LPS-induced inducible iNOS expression was stronger in the order of AIE, ACE and AID. Effect of ACD was same with that of AID. In addition, inhibitory effect of the samples on LPS induced $TNF-{\alpha}$expression wes stronger in the order of AIE, ACE, AID and ACD. Conclusion: These results showed that AI would be more effective than AC and 70% EtOH would be more effective than DW as an extraction solvent in inflammatory diseases.

Effects of Agrimoniae Herba 30% ethanol extract on LPS-induced inflammatory responses in RAW264.7 macrophage cells (선학초(仙鶴草)추출물의 대식세포에서의 LPS-유도 염증반응에 대한 효능 연구)

  • Hwang, Ji Hye;Nam, Joo Hyun;Kim, Woo Kyung;Bae, Hyo Sang
    • The Korea Journal of Herbology
    • /
    • v.31 no.2
    • /
    • pp.63-69
    • /
    • 2016
  • Objectives : The aerial parts of Agrimonia pilosa Ledeb (Agrimoniae Herba; AH) has been traditionally used as a Korean medicine to treatment of abdominal pain, sore throat, headaches, bloody discharge, parasitic infections and eczema. In this study, we investigated the effect of AH ethanol extract on lipopolysaccharide (LPS)-induced inflammation in RAW264.7 macrophage cells.Methods : AH was extracted by 30% ethanol (AH-E). Raw264.7 cells were treated with AH-E extract at different concentrations for 30 min and then stimulated with LPS (1㎍/㎖) or without for indicated times. Cell viability was measured by MTT assay, and nitric oxide (NO) production was measured by Griess assay. The expression of inflammatory mediators, iNOS and COX-2 and inflammatory cytokines, TNF-α, IL-1β, and IL-6 was detected by RT-PCR, and the phosphorylation of ERK1/2, p38 and JNK MAP kinases (MAPKs) was analyzed by Western blot. Also, the expression of NF-κB in nuclear and cytosol was detected by Western blot.Results : AH-E extract significantly decreased LPS-induced NO production in RAW264.7 cells. AH-E extract inhibited the mRNA expression of iNOS, COX-2, TNF-α, IL-1β, and IL-6 in LPS-stimulated cells with a dose-dependent manner. In addition, the phosphorylation of ERK, p38 and JNK MAPKs was also inhibited by AH-E extract. AP-E extract inhibited the nuclear translocation of NF-κB in LPS-stimulated cells.Conclusions : Our results suggest that AH-E extract has an anti-inflammatory activity in macrophages-mediated inflammation.

Effect of OQ21 and Melatonin on Lipopolysaccharide-Induced Oxidative Stress in Rat Brain (흰쥐 뇌에서의 Lipopolysaccharide-유도 산화적 스트레스에 대한 OQ21과 Melatonin의 작용)

  • Bae Mee Kyung;Choi Shinkyu;Ko Moon-Jeong;Ha Hun-Joo;Kim Hwa-Jung
    • YAKHAK HOEJI
    • /
    • v.49 no.4
    • /
    • pp.347-354
    • /
    • 2005
  • Lipopolysaccharide (LPS) induces synthesis of several inflammatory cytokines and nitric oxide (NO). NO in brain is involved not only in the regulation of important metabolic pathways via intracellular cyclic GMP-dependent path­ways, but also in neurotoxic damage by reacting with superoxide ion leading to form peroxynitrite radical. Oxidative stress has suggested to be related to the inhibition of NO synthase/cyclic GMP pathway. OQ21 is a new fluorinated quinone compound that is recently known to have inhibitory effects on both NO synthase (NOS) and guanylyl cyclase (GC). In this study, we examined effects of OQ21, other known NOS or GC inhibitors, or an antioxidant, melatonin, on the oxidative stress produced by LPS in rat brain. Oxidative stress was observed by using the 2',7'-dichlorofluorescin diacetate to measure intra-cellular reactive oxygen species (ROS) production and by measuring the formation of thiobarbituric acid reactive substances to measure lipid peroxidation. LPS induced significant increase in both ROS produdction and lipid peroxidation in all brain regions tested (striatum, hippocampus and cortex), which were dissected 6hr after intraperitoneal administration of LPS to rats. Direct striatal injection of two NOS inhibitors, N-nitro-L-arginine methyl ester and diphenyleneiodonium, or a GC inhibitor, IH-[1,2,4]oxadiazolo[4,3-a]quinoxaline-l-one, produced no significant ROS increase. However, OQ21 enhanced ROS formation in striatal tissues from LPS-treated rats. Melatonin decreased LPS-induced ROS formation and decreased ROS formation increased by OQ21 in striatum of LPS-treated rats.

Nuclear Factor-${\kappa}B$ Dependent Induction of TNF-${\alpha}$ and IL-$1{\beta}$ by the Aggregatibacter actinomycetemcomitans Lipopolysaccharide in RAW 264.7 Cells

  • Na, Hee Sam;Jeong, So Yeon;Park, Mi Hee;Kim, Seyeon;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.39 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • Aggregatibacter actinomycetemcomitans is an important pathogen in the development of localized aggressive periodontitis. Lipopolysaccharide (LPS) is a virulent factor of periodontal pathogens that contributes to alveolar bone loss and connective tissue degradation in periodontal disease. Our present study was designed to investigate the cytokine expression and signaling pathways regulated by A. actinomycetemcomitans LPS (Aa LPS). Cytokine gene expression profiling in RAW 264.7 cells was performed by microarray analyses. The cytokine mRNA and protein levels and related signaling pathways induced by Aa LPS were measured by RT-PCR, ELISA and western blotting. Microarray results showed that Aa LPS strongly induced the expression of NF-${\kappa}B$, NF-${\kappa}B$-related genes, inflammatory cytokines, TNF-${\alpha}$ and IL-$1{\beta}$ in RAW 264.7 cells. NF-${\kappa}B$ inhibitor pretreatment significantly reduced the levels of TNF-${\alpha}$ and IL-$1{\beta}$ mRNA and protein. In addition, the Aa LPS-induced TNF-${\alpha}$ and IL-$1{\beta}$ expression was inhibited by p38/JNK MAP kinase inhibitor pretreatment. These results show that Aa LPS stimulates TNF-${\alpha}$ and IL-$1{\beta}$ expression through NF-${\kappa}B$ and p38/JNK activation in RAW 264.7 cells, suggesting the essential role of this pathway in the pathogenesis of localized aggressive periodontitis.

Anti-inflammatory Effect of Inonotus obliquus Extracts in Lipopolysaccharide-induced Mouse Peritoneal Macrophage (LPS로 유도된 마우스 복강 대식세포에서 차가버섯 열수 추출물의 염증 억제 효과)

  • Ko, Suk-Kyung;Pyo, Myoung-Yun
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.3
    • /
    • pp.253-259
    • /
    • 2011
  • Macrophages play a vital role in the innate immune system involving defensive cytokines such as TNF (tumor necrosis factor)-${\alpha}$ and nitric oxide (NO). Therefore, we try to elucidate the anti-inflammatory activity of Chaga mushroom (Inonotus Obliquus, IO) in murine macrophages. Raw 264.7 cells and peritoneal macrophages of mice were cultured with or without LPS/LPS + IFN-${\gamma}$ in the presence of IO aqueous extracts (IOE 0.2, 2, 20, 100 ${\mu}g$/mL) for 24 hr and 48 hr, respectively. Exposure of IOE caused the decrease of NO production and increase of TNF-${\alpha}$ production in dose-dependent manner in activated peritoneal macrophage in vitro. To further investigate anti-inflammatory effects of IO ex vivo, we orally administrated capsaicin (PC, 3 mg/kg/day) and IOE (100, 200, 400 mg/kg/day) for 4 consecutive days to C57BL/6 mice (7~9 weeks old, female), then observed the NO secretion and cytokine (TNF-${\alpha}$) production of LPS/LPS + INF-${\gamma}$-stimulated peritoneal macrophages. IOE inhibits NO secretion in dose-dependent manner both ex vivo and in vitro and increases the production of TNF-${\alpha}$ in vitro. In addition, we found that IOE possessed suppressive effects of LPS-stimulated TNF-${\alpha}$, IL-$1{\beta}$, COX-2, as well as iNOS expressions in Raw 264.7 cells. These findings indicate that IOE suppress not only the LPS-induced NO overproduction of murine peritoneal macrophages, but also iNOS, COX-2, TNF-${\alpha}$, and IL-$1{\beta}$ overexpression of LPS-induced Raw 264.7 cells. Consequently, our results suggest that IO may have the anti-inflammatory effects via suppression of the inflammatory cytokines and mediators, and be useful for the treatment of inflammatory diseases.