• 제목/요약/키워드: LPS-induced

검색결과 2,121건 처리시간 0.033초

Hepa1c1c-7 Cell에서 리포폴리사카라이드로 유도된 염증성 매개인자 생산에 있어서 코르티코스테론 전처리 효과 (Effect of Corticosterone Pretreatment on the Production of LPS-Induced Inflammatory Mediators in Hepa1c1c-7 Cells)

  • 채병숙
    • 약학회지
    • /
    • 제60권1호
    • /
    • pp.8-14
    • /
    • 2016
  • Endotoxemia induces production of inflammatory mediators and acute phase proteins, leading to multiorgan injury and systemic inflammation. Hypothalamic-pituitary-adrenal (HPA) axis activation and glucocorticoids (GCs) release modify endotoxemia-induced inflammatory responses. In the present study, we investigated whether pre-exposure of GCs influences endotoxin-induced production of inflammatory mediators in hepatocytes. Hepa1c1c-7 cells were pretreated with low concentrations of corticosterone for 24 h and then cultured without corticosterone in the presence or absence of LPS. Our results demonstrated that LPS alone significantly enhanced production of IL-6 and CRP but reduced vascular endothelial growth factor (VEGF) compared to controls. Combination of corticosterone pretreatment and LPS significantly upregulated production of IL-6, IL-$1{\beta}$, and VEGF but downregulated CRP compared to those in LPS alone. These findings suggest that in low concentration of corticosterone-preexposed hepatocytes, endotoxemia may induce upregulation of IL-6, IL-$1{\beta}$, VEGF and but downregulation of CRP.

속단(續斷)의 RAW264.7 세포에서 LPS에 의해 유도되는 염증반응에 대한 효과 (Effect of Dipsaci Radix Water Extract on LPS-induced Inflammatory Response in RAW264.7 Mouse Macrophages)

  • 민지영;박용기
    • 대한본초학회지
    • /
    • 제24권4호
    • /
    • pp.189-195
    • /
    • 2009
  • Objectives : In this study, the effect of Dipsaci Radix(DR, Dipsacus asperoides C.Y. Cheng et T. M. Ai) water extract on LPS-induced inflammatory response in RAW264.7 cells were investigated. Methods : Dried roots of DR was extracted with water for 3 h(DR-W extract). RAW264.7 cells, a mouse macrophage line, were incubated with different concentrations of DR-W extract for 30 min and then stimulated with LPS at indicated times. Cell toxicity was determined by MTT assay. The concentrations of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) were measured by Griess assay and enzyme immunoassay (EIA), respectively. The expression of inducible nitric oxide synthease (iNOS) and cyclooxyganase (COX)-2 mRNA and protein was determined by RT-PCR and Western blot, respectively. Results : DR-W extract was significantly inhibited LPS-induced productions of NO and PGE2 in RAW264.7 cells. DR-W extract was not suppressed the expressions of iNOS mRNA and protein in LPS-stimulated RAW264.7 cells. Conclusions : This study suggests that DR-W extract can attenuate inflammatory response via inhibition of the NO and PGE2 production in activated macrophages.

Comparison of Anti-Inflammation Effects of Specimens Before and After the Oil Extraction of Raphanus sativus L. Seed in RAW 264.7 Macrophage Activated by LPS

  • Sunyoung Park;Dahyun Mun;Gunwoo Lee;Youngsun Kwon;Hye-yeon Kang;Jeom-Yong Kim
    • 셀메드
    • /
    • 제13권6호
    • /
    • pp.7.1-7.6
    • /
    • 2023
  • Raphanus sativus L. has been reported to have anti-inflammatory and anti-tumor activity. However, the anti-inflammatory effect and mechanism of action of the Raphanus sativus L. seeds (RSS) with or without oil are still unknown. This study was undertaken to investigate the in-vitro anti-inflammatory effect with or without oil in the RSS on RAW 264.7 cells stimulated by lipopolysaccharide (LPS). Results showed the suppressed LPS-induced secretion of pro-inflammatory mediators such as nitric oxide (NO), inflammatory cytokine (IL-6, TNF-α). Additionally, a decrease in protein expression of iNOS was observed, but nuclear translocation of NF-κB p65 was not inhibited. To elucidate the underlying mechanism of the anti-inflammatory effect of RSS, the involvement of mitogen-activated protein kinase (MAPK) signaling pathways was examined. We also found that RSS blocked LPS-induced phosphorylation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK) signaling but did not affect the phosphorylation of p38 MAPK and extracellular signal-regulated kinase (ERK) 1/2. These results suggest that RSS may have potential as an anti-inflammatory agent through the inhibition of LPS-induced inflammatory cytokine production via regulation of the JNK pathway.

LPS로 자극한 RAW264.7 세포에서 강활 추출물의 염증성세포활성물질의 억제효과 (Inhibitory Effect of Extract from Ostericum koreanum on LPS-induced Proinflammatory Cytokines Production in RAW264.7 Cells)

  • 박희제;배기상;김도윤;서상완;박경배;김병진;송제문;이경용;나철;신병철;박성주;송호준;황성연
    • 대한본초학회지
    • /
    • 제23권3호
    • /
    • pp.127-134
    • /
    • 2008
  • Objectives : The present study was designed to investigate whether Ostericum koreanum (OK) could regulate lipopolysaccharide (LPS)-induced inflammatory response in vitro and in vivo. Methods : To evaluate of anti-inflammatory effect of OK, we examined Nitric oxide (NO), proinflammatory cytokines production in LPS-stimulated RAW264.7 cells. Furthermore, we checked molecular mechanism especially in the phosphorylation of mitogen-activated protein kinases (MAPKs) and the degradation of inhibitory kappa B a ($Ik-B{\alpha}$) using western blot and also investigated survival of mice in LPS-mediated endotoxin shock. Results : 1. Extract from OK itself have weak cytotoxic effect on RAW264.7 cells. Extract from OK inhibited LPS-induced NO, tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin $(IL)-1{\beta}$, IL-6 and IL-10 production in RAW264.7 cells. 2. OK inhibited the phosphorylation of MAPKs, such as p38, extracelluar signal-regulated kinase (ERK1/2) and c-Jun NH2-terminal kinase (JNK) and also the degradation of $I{\kappa}-B{\alpha}$ in the LPS-stimulated RAW264.7 cells 3. OK did not inhibit LPS-induced endotoxin shock. Conclusions : OK down-regulated LPS-induced NO and cytokines production through suppressing activation of MAPKs and degradation of $I{\kappa}-B{\alpha}$. Our results suggested that OK may be a beneficial drug against inflammatory diseases.

  • PDF

Anthocyanins from Hibiscus syriacus L. Attenuate LPS-Induced Inflammation by Inhibiting the TLR4-Mediated NF-κB Signaling Pathway

  • Karunarathne, Wisurumuni Arachchilage Hasitha Maduranga;Molagoda, Ilandarage Menu Neelaka;Lee, Kyoung Tae;Choi, Yung Hyun;Kang, Chang-Hee;Jeong, Jin-Woo;Kim, Gi-Young
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.92-92
    • /
    • 2019
  • Excessive or chronic inflammation contributes to the pathogenesis of many inflammatory diseases such as sepsis, rheumatoid arthritis, and ulcerative colitis. Hibiscus syriacus L. has been used as a medicinal plant in many Asian countries, even though its anti-inflammatory activity has been unclear. Therefore, we investigated the anti-inflammatory effect of anthocyanin fractions from the H. syriacus L. varieties Pulsae (PS) on the lipopolysaccharide (LPS)-induced expression of proinflammatory mediators and cytokines in RAW264.7 macrophages. PS suppressed LPS-induced nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) secretion concomitant with downregulation of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, PS inhibited the production of proinflammatory cytokines such as tumor necrosis factor-alpha ($TNF-{\alpha}$), interleukin-6 (IL-6), and IL-12 in LPS-stimulated RAW264.7 macrophages. Further study showed that PS significantly decreased LPS-induced nuclear translocation of the nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) subunits, p65 and p50. Molecular docking data showed that many anthocyanins from PS fit into the hydrophobic pocket of MD2 and bound to Toll-like receptor 4 (TLR4), indicating that PS inhibits the TLR4-MD2-mediated inflammatory signaling pathway. Especially, apigenin-7-O-glucoside most powerfully bound to MD2 and TLR4 through LYS122, LYS122, and SER127 at a distance of $2.205{\AA}$, $3.098{\AA}$, and $2.844{\AA}$ and SER441 at a distance of $2.873{\AA}$ (docking score: -8.4) through hydrogen bonding, respectively. Additionally, PS inhibited LPS-induced TLR4 dimerization/expression on the cell surface, which consequently decreased MyD88 recruitment and IRAK4 phosphorylation. PS completely blocked LPS-mediated mortality in zebrafish larvae by diminishing the recruitment of neutrophil and macrophages accompanied by low levels of proinflammatory cytokines. Taken together, our results indicate that PS attenuates LPS-mediated inflammation in both in vitro and in vivo by blocking the TLR4/MD2-MyD88/IRAK4-$NF-{\kappa}B$ axis. Therefore, PS might be used as a novel modulatory candidate for effective treatment of LPS-mediated inflammatory diseases.

  • PDF

Nuruk Extract Inhibits Lipopolysaccharide-Induced Production of Nitrite and Interleukin-6 in RAW 264.7 Cells Through Blocking Activation of p38 Mitogen-Activated Protein Kinase

  • Kim, Jong-Eun;Jung, Sung-Keun;Lee, Sang-Jin;Lee, Ki-Won;Kim, Gye-Won;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권8호
    • /
    • pp.1423-1426
    • /
    • 2008
  • Nuruk, which is a natural inoculator and source of amylolytic enzymes, is used in Korean traditional rice wine. A methanol extract of nuruk (NE) attenuated lipopolysaccharide (LPS)-induced nitrite and interleukin (IL)-6 in RAW 264.7 cells. Both the n-hexane and water fractions from NE (MEH and MW, respectively) inhibited the production of nitrite and IL-6 in RAW 264.7 cells. MEH and MW also inhibited the LPS-induced inducible nitric oxide synthase expression. Further, and MEH protected against the LPS-induced activation of p38 mitogen-activated protein kinase. Together, these results indicate that nuruk may contribute to the anti-inflammatory and cancer-preventive effects of Korean traditional rice wine.

성풍탕이 미세아교세포의 NO 생성에 미치는 영향 (Effects of Seongpung-tang on the NO Production of Primary Microglial Cell)

  • 성강경;임창용;이상관
    • 대한한의학회지
    • /
    • 제21권1호
    • /
    • pp.91-98
    • /
    • 2000
  • The water extract of Seongpungtang(SPT) has commonly been used for treatment of ischemic brain damage in Oriental traditional medicine. However, little is known about the mechanism by which the water extract of SPT rescues brain cells from ischemic damage. To elucidate the protective mechanism of ischemic induced cytotoxicity, the regulation of Lipopolysaccharide (LPS) and PMA (phobol-12-myristate-13-acetate) induced iNOS expression in microglial cells was investigated. LPS and PMA treatment for 48 hr in microglial cells markedly induced nitric oxide (NO), but treatment of the cells with the water extract of SPT decreased nitrite formation. In addition, LPS and PMA treatment for 48 hr induced severe cell death in microglial cells. However treatment of the cells with the water extract of SPT did not induce significant changes compared to the control cells. Furthermore, NO production was markedly decreased by treatment of nuclear factor kappa B(NF-kB) inhibitor, pyrrolidine dithiocarbamate(PDTC). According to the above results, it is suggested that the protective effects of the water extract of SPT against ischemic brain damage may be mediated by regulation of iNOS during ischemic condition.

  • PDF

황련 추출물의 분획화 및 BV2 microglial cells에서 LPS에 의해 유도되는 nitric oxide 생성억제효과 검정 (Effects of subfractions of Coptidis Rhizoma extract on the nitric oxide production in LPS-stimulated BV2 microglial cells)

  • 정효원;박용기
    • 대한본초학회지
    • /
    • 제22권2호
    • /
    • pp.73-78
    • /
    • 2007
  • Objectives : Uncontrolled activation of microglia may directly toxic to neurons by releasing various substances such as inflammatory cytokines, nitric oxide(NO), prostaglandin E2 and superoxide. In this study, the effects of the several subfractions isolated from Coptidis Rhizoma extract were investigated on NO production in LPS-stimulated BV2 microglial cells, Methods : Coptidis Rhizoma extract prepared with 80% methanol, and then fractionated with ethylacetate, chloroform, n-butanol and water. BV2 cells were pretreated four subfractions of Coptidis Rhizoma with various concentrations, and then stimulated with LPS. Cytotoxicity of each fraction was measured by MTT assay. NO production was determined in culture surpernatants by Griess reagent. Results : Ethylacetate, chloroform and butanol fractions of Coptidis Rhizoma extract significantly decreased LPS-induced NO production in BV2 cells as a dose-dependent manner without cytotoxicity. Ethylacetate fraction of Coptidis Rhizoma extract was most effective on inhibition of NO production in LPS-stimulated BV2 cells compared with other fractions. Conclusion : This data indicates that Ethylacetate fraction of Coptidis Rhizoma extract shows strong antiinflammatory effects through inhibition of LPS-induced microglial activation.

  • PDF

Increase of Grb2 and Ras Proteins and Expression of Growth Factors in LPS Stimulated Odontoblast-like Dental Pulp Cells

  • Jeong, Soon-Jeong;Jeong, Moon-Jin
    • Applied Microscopy
    • /
    • 제43권1호
    • /
    • pp.27-33
    • /
    • 2013
  • Inflammatory cells express the inflammatory cytokines and growth factors induced by lipopolysaccharide (LPS). Odontoblasts are located at the pulp-dentin interface and extend their cell processes far into the dentin where they are the first cells to encounter microorganisms or their products. Therefore, this study examined the expression of some growth factors related to the signal pathway, such as growth factor receptor binding protein 2 (Grb2)-Ras in odontoblast-like dental pulp cells, after a treatment with LPS. After 60 minutes, the mRNA and protein expression levels of Grb2 and Ras were higher in the LPS-treated cells than in the control cells. The level of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) mRNA expression was increased significantly to a level similar to that of Grb2 and Ras at 60 minutes. The platelet-derived growth factor-AA (PDGF-AA) mRNA level was expressed strongly in the odontoblast like dental pulp cells without an association with LPS stimulation. Scanning electron microscopy revealed many extensions of the cytoplasmic processes and the number of processes increased gradually at 30, 60 and 90 minutes after LPS stimulation. From these results VEGF and bFGF expression might be induced through the Grb2-Ras signal transduction pathway in LPS treated odontoblasts.

In Vitro에서 PMA와 LPS로 활성화된 흰쥐 간내 Kupffer-와 Endothelial 세포에서의 NO 형성에 관한 연구 (NO Formation of the PMA and LPS-activated Rat Kupffer- and Endothelial Cells in vitro)

  • 김기성
    • Biomolecules & Therapeutics
    • /
    • 제3권3호
    • /
    • pp.188-191
    • /
    • 1995
  • The Present study was undertaken to indicate the major source of NO by liver cells in vitro. Even at early stages of induction or low LPS concentrations, NO was produced at high rates by LPS(Lipopolysaccharide) on the isolated rat kupffer cells. PMA(phorbol 12-myristate 13-acetate) induced NO formation at low rates in the same cells. IFN-${\gamma}$ (Interferon-${\gamma}$) alone had not induced NO formation but it stimulated the effects of LPS. Calcium ionophore A23187 caused no stimulatory effect. It suggests that LPS has especially strong NO inducer on the kupffer cells and its mechanism is related to those on macrophage in other organs. In other nonparenchymal liver cells, sinusoidal endothelial cells were not stimulated to produce NO either by inducers of aortic endothelium(A23187, ATP and ADP) or by effectors of macrophages(LPS, IFN-${\gamma}$. This results suggest that rat liver kupffer cells appear to be the major source of NO by liver cells in vitro. But in vivo, liver endothelial cells may still be capable of producing NO. Furthermore, kupffer cells may produce factors that facilitate NO production by the endothelial cells.

  • PDF