• 제목/요약/키워드: LPS-induced

검색결과 2,120건 처리시간 0.036초

A Novel Synthetic Compound, YH-1118, Inhibited LPS-Induced Inflammatory Response by Suppressing IκB Kinase/NF-κB Pathway in Raw 264.7 Cells

  • Yun, Chang Hyun;Jang, Eun Jung;Kwon, Soon Cheon;Lee, Mee-Young;Lee, Sangku;Oh, Sei-Ryang;Lee, Hyeong-Kyu;Ahn, Kyung-Seop;Lee, Ho-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1047-1055
    • /
    • 2015
  • For the search of a potent first-in-class compound to inactivate macrophages responsible for inflammatory responses, in the present study, we investigated the anti-nflammatory effects of YH-1118, a novel synthetic compound, in a lipopolysaccharide (LPS)-stimulated mouse macrophage cell line, Raw 264.7. YH-1118 inhibited LPS-induced nitric oxide (NO) production and inducible NO synthase (iNOS) expression at both the protein and mRNA levels. The suppression of LPS-induced iNOS expression by YH-1118 was mediated via nuclear factor kappa B (NF-κB), but not activator protein-1 (AP-1) transcription factor. This was supported by the finding that YH-1118 attenuated the phosphorylation of inhibitor of κBα (IκBα) and nuclear translocation and DNA binding activity of NF-κB. Through the mechanisms that YH-1118 inhibited the activation of IκB kinases (IKKs), upstream activators of NF-κB, or p38 MAPK, YH-1118 significantly suppressed LPS-induced production of pro-inflammatory cytokines, tumor necrosis factor-α, interleukin-1β (IL-1β), and IL-6 (p < 0.05). In conclusion, our results suggest that YH-1118 inhibits LPS-induced inflammatory responses by blocking IKK and NF-κB activation in macrophages, and may be a therapeutic candidate for the treatment of various inflammatory diseases.

Adenine attenuates lipopolysaccharide-induced inflammatory reactions

  • Silwal, Prashanta;Lim, Kyu;Heo, Jun-Young;Park, Jong IL;Namgung, Uk;Park, Seung-Kiel
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권4호
    • /
    • pp.379-389
    • /
    • 2018
  • A nucleobase adenine is a fundamental component of nucleic acids and adenine nucleotides. Various biological roles of adenine have been discovered. It is not produced from degradation of adenine nucleotides in mammals but produced mainly during polyamine synthesis by dividing cells. Anti-inflammatory roles of adenine have been supported in IgE-mediated allergic reactions, immunological functions of lymphocytes and dextran sodium sulfate-induced colitis. However adenine effects on Toll-like receptor 4 (TLR4)-mediated inflammation by lipopolysaccharide (LPS), a cell wall component of Gram negative bacteria, is not examined. Here we investigated anti-inflammatory roles of adenine in LPS-stimulated immune cells, including a macrophage cell line RAW264.7 and bone marrow derived mast cells (BMMCs) and peritoneal cells in mice. In RAW264.7 cells stimulated with LPS, adenine inhibited production of pro-inflammatory cytokines $TNF-{\alpha}$ and IL-6 and inflammatory lipid mediators, prostaglandin $E_2$ and leukotriene $B_4$. Adenine impeded signaling pathways eliciting production of these inflammatory mediators. It suppressed $I{\kappa}B$ phosphorylation, nuclear translocation of nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), phosphorylation of Akt and mitogen activated protein kinases (MAPKs) JNK and ERK. Although adenine raised cellular AMP which could activate AMP-dependent protein kinase (AMPK), the enzyme activity was not enhanced. In BMMCs, adenine inhibited the LPS-induced production of $TNF-{\alpha}$, IL-6 and IL-13 and also hindered phosphorylation of $NF-{\kappa}B$ and Akt. In peritoneal cavity, adenine suppressed the LPS-induced production of $TNF-{\alpha}$ and IL-6 by peritoneal cells in mice. These results show that adenine attenuates the LPS-induced inflammatory reactions.

Kaempferol-3-O-${\beta}$-D-sophoroside의 RAW 264.7 세포에서 $NF{-\kappa}B$ 억제를 통한 LPS에 의해 유도되는 iNOS, COX-2 및 cytokine들의 발현 저해효과 (Inhibition of LPS induced iNOS, COX-2 and cytokines expression by kaempferol-3-O-${\beta}$-D-sophoroside through the $NF{-\kappa}B$ inactivation in RAW 264.7 cells)

  • 박승재;신지선;조웅;조영욱;안은미;백남인;이경태
    • 생약학회지
    • /
    • 제39권2호
    • /
    • pp.95-103
    • /
    • 2008
  • In the present study, we investigated the anti-inflammatory effects by kaempferol-3-O-${\beta}$-D-sophoroside (KS) isolated from Sophora japonica (Leguminosae) on the lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin ($PGE_2$) production by RAW 264.7 cell line compared with kaempferol. KS significantly inhibited the LPS-induced NO and $PGE_2$ production. Consistent with these observations, KS reduced the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner. In addition, the release and the mRNA expression levels of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-6 (IL-6) were also reduced by KS. Moreover, KS attenuated the LPS-induced activation of nuclear factor-kappa B ($NF{-\kappa}B$), a transcription factor necessary for pro-inflammatory mediators, iNOS, COX-2, $TNF-{\alpha}$ and IL-6 expression. These results suggest that the down regulation of iNOS, COX-2, $TNF-{\alpha}$, and IL-6 expression by KS are achieved by the downregulation of $NF{-\kappa}B$ activity, and that is also responsible for its anti-inflammatory effects.

Avicularin Inhibits Lipopolysaccharide-Induced Inflammatory Response by Suppressing ERK Phosphorylation in RAW 264.7 Macrophages

  • Vo, Van Anh;Lee, Jae-Won;Chang, Ji-Eun;Kim, Ji-Young;Kim, Nam-Ho;Lee, Hee Jae;Kim, Sung-Soo;Chun, Wanjoo;Kwon, Yong-Soo
    • Biomolecules & Therapeutics
    • /
    • 제20권6호
    • /
    • pp.532-537
    • /
    • 2012
  • Avicularin, quercetin-3-${\alpha}$-L-arabinofuranoside, has been reported to possess diverse pharmacological properties such as anti-inflammatory and anti-infectious effects. However, the underlying mechanism by which avicularin exerts its anti-inflammatory activity has not been clearly demonstrated. This study aimed to elucidate the anti-inflammatory mechanism of avicularin in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Avicularin significantly inhibited LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$ and the protein levels of iNOS and COX-2, which are responsible for the production of NO and $PGE_2$, respectively. Avicularin also suppressed LPS-induced overproduction of pro-inflammatory cytokine IL-$1{\beta}$. Furthermore, avicularin significantly suppressed LPS-induced degradation of $I{\kappa}B$, which retains NF-${\kappa}B$ in the cytoplasm, consequently inhibiting the transcription of pro-inflammatory genes by NF-${\kappa}B$ in the nucleus. To understand the underlying signaling mechanism of anti-inflammatory activity of avicularin, involvement of multiple kinases was examined. Avicularin significantly attenuated LPS-induced activation of ERK signaling pathway in a concentration-dependent manner. Taken together, the present study clearly demonstrates that avicularin exhibits anti-inflammatory activity through the suppression of ERK signaling pathway in LPS-stimulated RAW 264.7 macrophage cells.

Aromadendrin Inhibits Lipopolysaccharide-Induced Nuclear Translocation of NF-κB and Phosphorylation of JNK in RAW 264.7 Macrophage Cells

  • Lee, Jae-Won;Kim, Nam Ho;Kim, Ji-Young;Park, Jun-Ho;Shin, Seung-Yeon;Kwon, Yong-Soo;Lee, Hee Jae;Kim, Sung-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • 제21권3호
    • /
    • pp.216-221
    • /
    • 2013
  • Aromadendrin, a flavonol, has been reported to possess a variety of pharmacological activities such as anti-inflammatory, antioxidant, and anti-diabetic properties. However, the underlying mechanism by which aromadendrin exerts its biological activity has not been extensively demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of aromadedrin in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Aromadendrin significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$. In accordance, aromadendrin attenuated LPS-induced overexpression iNOS and COX-2. In addition, aromadendrin significantly suppressed LPS-induced degradation of $I{\kappa}B$, which sequesters NF-${\kappa}B$ in cytoplasm, consequently inhibiting the nuclear translocation of pro-inflammatory transcription factor NF-${\kappa}B$. To elucidate the underlying signaling mechanism of anti-inflammatory activity of aromadendrin, MAPK signaling pathway was examined. Aromadendrin significantly attenuated LPS-induced activation of JNK, but not ERK and p38, in a concentration-dependent manner. Taken together, the present study clearly demonstrates that aromadendrin exhibits anti-inflammatory activity through the suppression of nuclear translocation of NF-${\kappa}B$ and phosphorylation of JNK in LPS-stimulated RAW 264.7 macrophage cells.

LPS로 유도된 마우스 대식세포주인 RAW264.7에서 MAPK 조절에 의한 백미 물추출물의 항염증 활성 (Anti-inflammatory Activity of Cynanchi Atrati Radix Et Rhizoma Water Extracts via Regulation of MAPK in LPS-induced Murine Macrophage Cell Line, RAW 264.7)

  • 이상호;유지현;길기정
    • 대한본초학회지
    • /
    • 제37권6호
    • /
    • pp.19-28
    • /
    • 2022
  • Objectives : To develop natural ingredients that help prevent or treat anti-inflammatory-related diseases and use themas basic data, we investigated anti-inflammatory activity of Cynanchi Atrati Radix Et Rhizoma water extracts(CWE) in lipopolysaccharide(LPS)-induced murine macrophage cell line, RAW 264.7 cells. Methods : The cell viabilities were evaluated with RAW 264.7 cells. The production of nitric oxide(NO), prostaglandin E2(PGE2), pro-inflammatory cytokines such tumor necrotic factor(TNF)-α and interleukin(IL)-6 were assessed in LPS-induced RAW 264.7 cell treated with CWE. Furthermore, the protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2(COX-2), and mitogen-activated protein kinase(MAPK) were assessed by western blotting. Results : In RAW 264.7 cell, the cell viability by CWE treatment was more than 98.4% at a concentration of 100-400 ㎍/mL. At a concentration of 800 ug/ml of CWE, the cell viability was as low as 86%. At doses of 100, 200 and 400 ㎍/mL, CWE inhibited the production of NO, PGE2, TNF-𝛼 and IL-6 in a dose-dependent manner and also decreased the expression of iNOS and COX-2 from LPS-induced RAW 264.7 cells. In addition, CWE significantly inhibited the MAPK pathway including decreased the phosphorylation of the p38, c-Jun N-terminal kinase(JNK) and extracellular signal-regulated kinase(ERK1/2). Conclusions : Our study provides evidence that CWE inhibits the production of main pro-inflammatory molecules in LPS-induced RAW 264.7 cells via expression of p38, JNK, and ERK1/2 MAPK signaling pathways. Therefore, CWE is expected to be widely used as a natural ingredient for anti-inflammatory functional foods or pharmaceuticals in the future.

BV2 microglial cells에서 ERK를 통한 고삼의 Tnf alpha 생성 억제효과 (ERK mediated suppressive effects of Sophora flavescens on Tnf alpha production in BV2 microglial cells)

  • 김수철;한미영;박혜정;정경희
    • 대한본초학회지
    • /
    • 제22권2호
    • /
    • pp.147-153
    • /
    • 2007
  • Objectives : Sophora flavescens (SF) is widely used in traditional herbal medicine in Korea and is well recognized for its anti-inflammatory effect. However, its effect on Tumornecrosis factor alpha (Tnf) production in BV2 microglial cell is not yet known. Methods : We investigated the effect of SF on the production and expression of Tnf, a well known inflammatory mediator, in lipopolysaccaride (LPS)-activated BV2 microglial cells. Results : The LPS-induced Tnf production was markedly reduced by treatment with SF (50 ${\mu}g/ml$). In reverse transcription polymerase chain reaction (RT-PCR) analysis, SF suppressed the LPS activated expression of Tnf mRNA. In addition, Western blot analysis confirmed that SF suppressed the expression of Tnf. Sophora flavescens also inhibited the LPS-induced phosphylation of extracellular signal-regulated kinases (ERK), which mediate the Tnfproduction signaling pathway whereas LPS-induced phosphylation of p38 mitogen activated protein kinase (p38 MAPK), and c-Jun NH2-terminal kinases (JNK) was not inhibited by SF, which implies that SF suppresses LPS-induced Tnf production via the ERK mediated pathway. Conclusion : Taken together, these findings indicated that SF inhibits LPS-induce Tnf production, and that this inhibitory effect is mediated via the ERK pathway.

  • PDF

A Tubulin Inhibitor, N-(5-Benzyl-1,3-thiazol-2-yl)-3-(furan-2-yl)prop-2-enamide, Induces Anti-inflammatory Innate Immune Responses to Attenuate LPS-mediated Septic Shock

  • Park, Hyun Jung;Lee, Sung Won;Park, Hwangseo;Park, Se-Ho;Hong, Seokmann
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3307-3312
    • /
    • 2014
  • The anti-inflammatory effect of a tubulin inhibitor, N-(5-benzyl-1,3-thiazol-2-yl)-3-(furan-2-yl)prop-2-enamide (1), on innate immune responses remains unclear. Thus, we investigated the effect of 1 on the immune responses mediated by lipopolysaccharide (LPS). The in vitro addition of 1 to dendritic cells and macrophages dose-dependently reduced tumor necrosis factor alpha production elicited by LPS stimulation. Additionally, the stimulation of natural killer (NK) and natural killer T (NKT) cells with 1 resulted in the decrease of interferon gamma ($IFN{\gamma}$) induced by LPS treatment. Moreover, 1 substantially reduced interleukin 12 in dendritic cells (DC) as well as $IFN{\gamma}$ in NKDCs induced by LPS in vitro. Furthermore, the in vivo administration of 1 ameliorated LPS/D-galactosamine-induced endotoxic lethality in mice. Taken together, our results demonstrate for the first time that 1 possesses anti-inflammatory properties, most notably by modulating LPS-induced innate immune responses. Therefore, 1 might have therapeutic potential for the treatment of inflammation-mediated diseases such as sepsis.

Acrolein with an α,β-unsaturated Carbonyl Group Inhibits LPS-induced Homodimerization of Toll-like Receptor 4

  • Lee, Jeon-Soo;Lee, Joo Young;Lee, Mi Young;Hwang, Daniel H.;Youn, Hyung Sun
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.253-257
    • /
    • 2008
  • Acrolein is a highly electrophilic ${\alpha},{\beta}$-unsaturated aldehyde present in a number of environmental sources, especially cigarette smoke. It reacts strongly with the thiol groups of cysteine residues by Michael addition and has been reported to inhibit nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) activation by lipopolysaccharide (LPS). The mechanism by which it inhibits $NF-{\kappa}B$ is not clear. Toll-like receptors (TLRs) play a key role in sensing microbial components and inducing innate immune responses, and LPS-induced dimerization of TLR4 is required for activation of downstream signaling pathways. Thus, dimerization of TLR4 may be one of the first events involved in activating TLR4-mediated signaling pathways. Stimulation of TLR4 by LPS activates both myeloid differential factor 88 (MyD88)- and TIR domain-containing adapter inducing $IFN{\beta}$ (TRIF)-dependent signaling pathways leading to activation of $NF-{\kappa}B$ and IFN-regulatory factor 3 (IRF3). Acrolein inhibited $NF-{\kappa}B$ and IRF3 activation by LPS, but it did not inhibit $NF-{\kappa}B$ or IRF3 activation by MyD88, inhibitor ${\kappa}B$ kinase $(IKK){\beta}$, TRIF, or TNF-receptor-associated factor family member-associated $NF-{\kappa}B$ activator (TANK)-binding kinase 1 (TBK1). Acrolein inhibited LPS-induced dimerization of TLR4, which resulted in the down-regulation of $NF-{\kappa}B$ and IRF3 activation. These results suggest that activation of TLRs and subsequent immune/inflammatory responses induced by endogenous molecules or chronic infection can be modulated by certain chemicals with a structural motif that enables Michael addition.

음곡에 시술한 석위약침이 Lipopolysaccharide로 유도된 흰쥐의 신장염에 미치는 영향 (The Effect of Pyrrosiae Herba Herbal-acupuncture at KI10 on Lipopolysaccharide Induced Nephritis in Rats)

  • 장승훈;김재홍;임윤경
    • Journal of Acupuncture Research
    • /
    • 제32권3호
    • /
    • pp.15-25
    • /
    • 2015
  • Objectives : The purpose of this study is to investigate the effects of Pyrrosiae Herba herbal-acupuncture(PH-HA) at $KI_{10}$(Umgok) on nephritis induced by lipopolysaccharide(LPS) in rats. Methods : Rats were assigned to four groups: normal, LPS, saline and PH-HA. Rats in the saline and PH-HA groups were treated with saline injection and PH-HA respectively at $KI_{10}$, three times over the period of one week. All animals, except those in the normal group, were injected intra-peritoneally with LPS to induce nephritis. WBC, in blood, tumor necrosis factor alpha(TNF-${\alpha}$), cytokine-induced neutrophil chemoattractant 1(CINC-1), blood urea nitrogen(BUN), creatinine in serum, urinal volume, total protein creatinine in urine, and renal myeloperoxidase (MPO) were analyzed. Results : 1. PH-HA group showed significantly reduced levels of serum BUN, serum creatinine, TNF-${\alpha}$, and CINC-1 compared to the LPS group. Furthermore, a significant increase in urine output and more significant decreases in total protein in urine and MPO in renal tissue were observed in the PH-HA group when compared to the LPS group. 2. The PH-HA group showed significantly reduced levels of serum creatinine and renal MPO, and a more significant increase in urine output compared to the saline group. Conclusions : According to these results, it is postulated that PH-HA at $KI_{10}$ has anti-inflammatory and renal-protective effects on LPS-induced nephritis in rats, and both acupoint $KI_{10}$ and the herb Pyrrosiae Herba made contributions to these effects. Further studies on the interaction between acupoint $KI_{10}$ and the herb Pyrrosiae Herba may be needed.