• 제목/요약/키워드: LPLi 인젝터

검색결과 10건 처리시간 0.017초

LPG 액상 분사 시 인젝터 주위의 Icing 현상에 관한 연구 (I) (A Study on the Development of Icing by Injection of LPG in the Liquid Phase around Injector (I))

  • 김우석;박정철;박심수;유재석;이종화
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.87-94
    • /
    • 2003
  • Recently, LPLi(Liquied-Phase LPG injection) system is studied for the new stringent emission regulations. But , there are some problems to be solved such as injector tip icing and fuel leakage for LPLi system development. In this paper, the icing problem near injector tip which leads to difficulty of accurate A/F control was studied and reported. Icing of injector tip and port wall was observed at all the cases in this study regardless of injection duration and angle, air humidity change. The spray angle of LPLi was observed approximately two times wider than that of Gasoline injection. This makes the LPLi spray collide with intake port around injector tip. Temperature of the wetted area was decreased and icing of water vapor contained in intake air because of evaporation of the fuel film. The ice of the injector tip and port wall is also affected by the materials related to heat transfer.

LPLi 엔진 인젝터의 결빙조각 형성이 연소 및 배기가스에 미치는 영향 (Visualization of the Icing at LPLi Engine Injector and the Effect of the Inflow of Ice Particle into Cylinder on the Combustion and the Exhaust Gas)

  • 박정철;김우석;이종화;이병옥;박경석
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.39-44
    • /
    • 2004
  • As air pollution has become an important issue across the world, studies of clean fuel are on going to reduce combustion emissions. One example is development of the LPLi(Liquefied Phase LPG injection) engine. Some problems are occurred during development. One of the problems is icing phenomenon at injector tip due to evaporation potential heat when liquid LPG is injected. If the Icing is raised at injector tip or injector inserting hole, it disturbs fuel injection. And if the ice particles are inducted into cylinder, it brings problems associated with control of emission and air/fuel ratio. In order to solve the problems, a rig system was set up and observed Icing of injector tip. Engine test was carried out for visualization of injector tip icing and its effects on combustion and emissions.

LPLi 인젝터의 누설특성 및 내구평가에 관한 실험적 연구 (An Experimental Study on the Leakage Characteristics and Durability Evaluation of an LPLi Injector)

  • 최영;김창업;오승묵;강건용
    • 한국분무공학회지
    • /
    • 제12권4호
    • /
    • pp.204-210
    • /
    • 2007
  • The worldwide energy problem and global warming cause the need of alternative fuels which feature low carbon-dioxide emission and another energy source. Liquefied Petroleum Gas (LPG) is one of the alternative fuels widely used as domestic and transportational fuel. The third generation LPLi fuel supply system has merits in the increase of engine power and low emissions. The injectors used in LPLi system should overcome a leakage problem and satisfy the durability conditions. Therefore, 1000 hour durability test of the injectors was carried out throughout this research. First, the spray pattern and the penetration length of the selected injectors is graphically shown. Next, the leakage amount with respect to the injection cycle is introduced. Finally, the shapes of nozzle holder and nozzle tip after durability test was investigated by analyzing the microscopic image of the injector tip. The variation in the shape of nozzle tip mainly due to the residue of rubber materials is found to be the reason for leakage.

  • PDF

LPG 인젝터형 플라즈마 개질기 적용연구 (Application Research on LPG Injector type Plasma Reformer)

  • 김창업;이대훈
    • 한국가스학회지
    • /
    • 제18권1호
    • /
    • pp.1-7
    • /
    • 2014
  • 본 연구에서는 LPG자동차용 LPG 액상분사 인젝터의 분사구 앞에 장착할 수 있는 플라즈마 개질기의 개발을 진행하였다. 이 개질기는 플라즈마 방전이 발생하는 영역에 공기와 LPG 연료를 분사시켜 고분자 탄소연료를 열해리시키고 추가로 수소를 발생시키기 위한 목적으로 개발되었다. 인젝터와 플라즈마 발생부와의 거리와 기하학적인 방전길을 최적화하여 개질 반응이 일어나는 인젝터 개질기를 완성하였으며, 개질 결과 공급 전력 70~100W 일 때 HC은 전체 개질가스의 약 0.7% 이며, 수소는 1.2~1.5% 발생하였다.

부탄과 프로판 혼합비율에 따른 액상 LPG 분사시 Icing 특성 (Icing Characteristics of Liquid Phase LPG Injection According to Butane and Propane Mixing Rates)

  • 김영진;조원준;이기형
    • 한국분무공학회지
    • /
    • 제16권3호
    • /
    • pp.146-151
    • /
    • 2011
  • LPG(Liquified Petroleum Gas) fuel for vehicles has lots of advantages such as low emission level, cheaper fuel cost and enough infrastructure. Therefore it arouses interest as an alternative engine to reduce emission of diesel engines. Especially MPI(Multi Point Injection) type LPLi(Liquid Phase LPG injection) system could have overcome the disadvantages of mixer types such as low engine performance, decreased charging efficiency and cold starting difficulty. However ice formation on the nozzle tip and intake port due to the freezing of moisture around the components is often observed in LPLi systems. This icing phenomenon is the direct cause of unstable engine combustion, resulting in engine emissions. Therefore in this research, a spray visualization test for LPG injection was carried out to obtain the basic information of an LPLi injector, then the effects of butane and propane mixing rates on ice formation at the intake port and nozzle tip was investigated. As a result, the icing characteristics of them showed contrary results according to the mixing rates.

저점도 LPG연료 인젝터의 누설특성에 관한 연구 (Leakage Characteristics of LPG injector with Low Viscosity LPG Fuel)

  • 김창업;박철웅;오승묵;강건용
    • 한국분무공학회지
    • /
    • 제10권4호
    • /
    • pp.8-15
    • /
    • 2005
  • The use of clean gaseous fuels for the purpose of high efficiency and low emission in automotive engines has tendency to increase in order to meet the reinforcing emission regulations and to efficiently utilize limited natural resources. Automotive companies developed and commercialized a LPG liquid injection system, which is mounted on LPLi(Liquid Phase LPG Injection) engines and vehicles based on this research trend. This research examines the biggest problem in LPLi engine, that is, the leakage characteristics of low viscosity LPG fuel according to the injector design variables. This study is also aimed to improve the performance of fuel-leakage in LPLi engine through the addition of a lubrication improver in HFRR(High Frequency Reciprocating Rig) facility. The needle displacement and the spring displacement of an LPLi injector are found to be already optimized. The possibility of a maximum of 70% leakage reduction compared to a conventional case, is verified when 1000ppm of a lubrication improvement material is added and 40% increase of a injector spring constant (K) is applied.

  • PDF

대형 액상분사식 LPG엔진 인젝터의 아이싱 특성연구 (Characteristics of Icing Phenomenon on Injector in a Liquid Phase LPG Injection SI Engine)

  • 김창업;오승묵;강건용
    • 한국분무공학회지
    • /
    • 제8권2호
    • /
    • pp.1-6
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system (the third generation technology) has been considered as one of the next generation fuel supply systems for LPG vehicles, since it has a very strong potential to accomplish the higher power, higher efficiency, and lower emission characteristics than the mixer type(the second generation technology) fuel supply system However. when a liquid LPG fuel is injected into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. This leads to freezing of the moisture in the air around the outlet of a nozzle, which is called icing phenomenon. It may cause damage to the outlet nozzle of an injector or inlet valve seat. In this work, the experimental investigation of the icing phenomenon was carried out The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of air temperature in the inlet duel. Also, it was observed that the total ice formed around the nozzle weighs at about $150mg{\sim}260mg$ after injection for ten minutes. And some fuel species were found in the ice attached at the front side of a nozzle, while frozen ice attached at the back of a nozzle was mostly' consisted of moisture of inlet air. Therefore, some frozen ice deposit. detached from front nozzle of an injector, may cause a problem of unfavorable air fuel ratio control in the small LPLI engine.

  • PDF

분사조건에 따른 LPG 인젝터의 분무특성에 관한 연구 (A Study on the spray characteristics according to injection conditions for LPG injector)

  • 류재덕;윤용원;이기형;이창식
    • 한국분무공학회지
    • /
    • 제6권3호
    • /
    • pp.17-22
    • /
    • 2001
  • Recently LPG engine is developed to fulfill such new requirements as improved fuel efficiency in additional to further reduced exhaust emission. This experimental study is conducted to analyze spray characteristics for pintle type injector used in a LPLi (Liquid Phase LPG injection) engine. Since spray parameters including penetration length and spray angle make a role to design injector and engine intake system, spray visualization experiment is performed under atmosphere ambient and charging condition using Mie scattering method. From the experimental result under various LPG formation, the increased propane component decreases penetration length because boiling point of propane is lower than butane. To simulate intake charging condition in MPI engine, spray visualization is performed under high pressure condition. As a result, as ambient pressure is increased from atmosphere to 3.0 bar, penetration length is decreased. However, as ambient pressure is increased from atmosphere to 3.0 bar, spray angle is increased.

  • PDF

액상분사식 LPG엔진 인젝터의 후적 및 아이싱 특성에 관한 연구 (A Study of Droplets and Icing Characteristics on Injector in a Liquid Phase LPG Injection Engine)

  • 김창업;최교남;강건용;박철웅
    • 한국분무공학회지
    • /
    • 제12권1호
    • /
    • pp.38-44
    • /
    • 2007
  • Since the Liquid Phase LPG injection (LPLI) system has Advantages in power generation and emission characteristics compared to the mixer-type fuel-supply system, a variety of studies regarding LPLi system has been conducted and its applications are made in automobile industry. However, the heat extraction due to the evaporation of liquid fuel, causes not only a post-accumulation of fuel but also an icing phenomenon which is a frost of moisture in the air around the nozzle tip. Since there exists a difficulty in the accurate control of air fuel ratio in both fuel supply systems, it can result in poor engine performance and a large amount of harmful emissions. This research examines the characteristics of icing phenomenon and develops anti-icing bushing to prevent an icing on the surface of the injection tip. It was found that n-butane, which has a relatively high boiling point ($-0.5^{\circ}C$), was a main species of post-accumulation. Also the results show that the post-accumulation problem was allevaited the utilization of a large inner to outer bore ratio and smooth surface roughness. In addition, an icing phenomenon and its formation process were found to be mainly affected by the humidity and the temperature of inlet air in an inlet duct. Also, it was observed that an icing phenomenon is lessened using aluminum bushing whose end coincides with the end of fuel injection tip in length.

  • PDF

LPG 액상분사식 인젝터에서 후적에 의한 아이싱 특성 연구 (Characteristics of Icing Phenomenon with Droplet of an Injector for Liquid Phase LPG Injection System)

  • 박철웅;김창업;최교남;강건용
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.9-16
    • /
    • 2007
  • Since the liquid phase LPG injection(LPLI) system has an advantage of higher power and lower emission characteristics than the mixer type fuel supply system, many studies and applications have been conducted. However, the heat extraction, due to the evaporation of liquid fuel, causes not only a dropping of LPG fuel but also icing phenomenon that is a frost of moisture in the air around the nozzle tip. Because both lead to a difficulty in the control of accurate air fuel ratio, it can result in poor engine performance and a large amount of HC emissions. The experimental investigation was carried out on the bench test rig in this study. It was found that n-butane, that has a relatively high boiling point($-0.5^{\circ}C$), was a main species of droplet composition and also found that the droplet problem was improved by the use of a large inner to outer bore ratio nozzle whose surface roughness is smooth. The icing phenomena were decreased when the an engine head temperature was increased, although a large amount of icing deposit was still observed in the case of $87^{\circ}C$. Also, it was observed that the icing phenomenon is improved by using anti-icing bushing.