• Title/Summary/Keyword: LPG tank accident

Search Result 15, Processing Time 0.022 seconds

Discussions on the Cause of Bucheon LPG Station Accident (부천 LPG 충전소 사고 원인에 대한 연구)

  • 윤재건
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.31-34
    • /
    • 2001
  • Cause of Bucheon LPG refueling station accident could not be clearly verified because of opposite talking of men reponsible for the accident the accident, damaged by BLEVE and fire, and no systematic fire investigation. After two and half years, recently first judgement has been carried out. But competitive arguement is going on and first leak point of massive LPG will not be clearly identified with evidences acquired by now. This accident gave us many instructions and advices. Specially, massive LPG leak can result in pool fire and safety of underground-installed storage tank is proved by no damage in the strong BLEVE.

  • PDF

Transient Analysis of Heat Transfer and Pressure Variation for LPG Tank with Metal Explosion Suppression Material (금속폭발억제재가 충진된 LPG 탱크의 비정상 열전달 및 압력변화 해석)

  • Kim H. Y.;Chang H. W.;Chun C. K.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.4
    • /
    • pp.406-414
    • /
    • 1987
  • As one of the explosion suppression methods of LPG tank exposed to hot environment by an accident or fire, some material which has large heat capacity and thermal conductivity can be installed inside the LPG tank in order to suppress the temperature increasement of tank wall. In the present study, theoretical model for the horizontally locating cylindrical LPG tank with and without the aluminum explosion suppression material has been developed to predict the characteristics of system. As a parametric study, effects of two major parameters, thickness of material filling and initial vapor volume fraction, on the time variation of wall temperature, temperature and pressure in tank are numerically examined. The results of present study show that the thickness of material filling does not give big differences in the suppression characteristics when the thickness of filling is larger than three inches. In case of material filling, there are marked suppression effects to the increase-ment of wall temperature, average vapor temperature and pressure in tank compared with the case of no filling.

  • PDF

A Study on the decision of Scattering distance by Shape of Fragments in LPG Tank lorry Explosion (LPG 탱크로리 폭발시 파편 형상에 따른 비산거리 산정에 관한 연구)

  • Lee, Young Jin;Hwang, Yong Woo;Lee, Ik Mo;Moon, Jin Young
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.2
    • /
    • pp.29-34
    • /
    • 2017
  • LPG is a substance that requires a lot of attention because it can cause fatal damage to people and environment when an accident occurs. LPG is frequently accidents in transportation facilities as well as fixed facilities, among which LPG tank lorries are the most frequent accidents. When the LPG tank is evacuated, the LP gas leaks into two phases, leaks mostly to the gas and leaks to some liquid. At this time, the leaked gas will also sink downward because it is heavier than air, and if it continues to leak, it may form an explosion and explode by the ignition source. The purpose of this study is to present the evacuation distance by analyzing the effect distance of the LPG liquefied petroleum gas in the event of explosion. As a result of calculation of the scattering radius of the fragment, the cylinder fragment was scattered up to 561 m. Therefore, it is appropriate to set the distance to be escaped when the LPG tanker leaks to 561m or more.

A Study on the Quantitative Analysis for Explosion of LPG Storage Tank (LPG 저장탱크의 폭발에 대한 정량적 영향평가에 관한 연구)

  • Leem, Sa Hwan;Huh, Yong Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2013
  • The influence of the over-pressure caused by Explosion in gas station was calculated by using the Hopkinson's scaling law and injury effect by accident to buildings and human bodies was estimated by applying the probit model. As a result, the injury estimation was conducted by using the probit model for leakage 10% of 20ton storage tank. The separate distances from LPG station for building(damage) and human(lung hemorrhage to death) are 260 and 30 meters, respectively.

The Optimal Design of Explosion Prevention for LPG Storage Tank (폭발방지를 고려한 LPG 저장탱크 최적설계)

  • Leem, Sa-Hwan;Huh, Yong-Jeong;Son, Seok-Woo;Lim, Jae-Ki
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.949-952
    • /
    • 2010
  • The utilization of LPG(Liquefied Petroleum Gas) is increasing as an environmental-friendly fuel in all countries making green growth new paradigm, and use of gas is spread fast as motor fuels to decrease air pollution. Loss of lives by explosion and fire is happening every year as gas use increases, and gas accident in large scale storage property is causing serious problems socially. To minimize this problem, underground containment type storage tank is being presented as an alternative recently. In this study, to minimize explosion occurrence in underground containment type storage tank, the suitable storage tank is designed to consider explosion prevention that makes exposure surface area minimize in confined contents volume and flame to construct storage tank by the most suitable condition in the underground containment room. As a result of the design of storage tank having the most suitable condition by this research, underground containment space was minimized on diameter 3m, length 4.83m in 20 tons storage tank and its safety was improved as exposure surface area in flame decreased by 89.4%, compared with the existent storage tank.

  • PDF

Development of a Tool for Predicting the Occurrence Time of BLEVE in Small LPG Storage Tanks (LPG소형저장탱크 BLEVE 발생 시점 예측 툴 개발)

  • Chae, Chung Keun;Lee, Jae Hun;Chae, Seung Been;Kim, Yong Gyu;Han, Shin Tak
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.74-83
    • /
    • 2020
  • In Korea, about 110,000 LPG small storage tanks of less than three tons have been installed in restaurants, houses and factories, and are used as LPG supply facilities for cooking, heating and industrial use. In the case of combustible liquefied gas storage tanks, the tank may rupture due to the temperature increase of the tank steel plate (approximately 600℃) even when the safety valve is operating normally, causing large-scale damage in an instant. Therefore, in the event of a fire near the LPG small storage tank, it is necessary to accurately predict the timing of the BLEVE(Boiling Liquid Expanding Vapour Explosion) outbreak in order to secure golden time for lifesaving and safely carry out fire extinguishing activities. In this study, we have first investigated the results of a prior study on the prediction of the occurrence of BLEVE in the horizontal tanks. And we have developed thermodynamic models and simulation program on the prediction of BLEVE that can be applied to vertical tanks used in Korea, have studied the effects of the safety valve's ability to vent, heat flux strength of external fires, size of tanks, and gas remaining in tanks on the time of BLEVE occurrence and have suggested future utilization measures.

A Study on Damage Analysis Safety Distance Setting for LPG BLEVE (LPG BLEVE 피해분석 및 안전거리 설정에 관한 연구)

  • Kim, Jonghyuk;Lee, Byeongwoo;Kim, Jungwook;Jung, Seungho
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.25-31
    • /
    • 2020
  • Boiling Liquid Expanding Vapor Explosion(BLEVE) can cause not only economic damage to the plant but also serious casualties. LPG accidents account for 89.6 percent of all accidents caused by gas leaks in Korea over the past nine years, while casualties from accidents also account for 73 percent of all accidents, according to statistics from the Korea Gas Safety Corporation. In addition, a potential explosion and a fire accident from one LPG storage tank may affect the nearby storage tanks, causing secondary and tertiary damage (domino effect). The safety distance standards for LPG used by LPG workplaces, charging stations, and homes in Korea have become stricter following the explosion of LPG charging stations in Bucheon. The safety distance regulation is divided into regulations based on the distance damage and the risk including frequency. This study suggests two approaches to optimizing the safety distance based on the just consequence and risk including frequencies. Using the Phast 7.2 Risk Assessment software by DNV GL, the explosion overpressure and heat radiation were derived according to the distance caused by BLEVE in the worst-case scenario, and accident and damage probability were derived by considering the probit function and domino effect. In addition, the safety distance between LPG tanks or LPG charging stations was derived to minimize damage effects by utilizing these measures.

Impact Range Analysis of Small LPG Storage Tank Explosions at Highway Rest Areas (고속도로 휴게소 소형 LPG 저장탱크 폭발에 따른 영향범위 분석)

  • Seung duk Jeon;Soon Beom Lee;Jai Young Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.319-327
    • /
    • 2023
  • This study analyzes the risks of explosions of small LPG storage tanks installed at highway rest areas. For this purpose, the ranges of the effect of thermal radiation and overpressure caused by the BLEVE(Boiling Liquid Expansion Vapor Explosion)and VCE(Vapor Cloud Explosion) of a 2900-kg small LPG storage tank installed at highway rest areas were quantitatively evaluated by applying the Areal Location of Hazardous Atmospheres program. The ranges of influence of the derived explosion overpressure and thermal radiation were found to have a maximum radii of 336 m and 423 m, respectively. The study determined that those within 269 m could be severely injured by an explosion overpressure of 3.5 psi, and fatalities from thermal radiation of 10 kw/m2 could occur within 192 m of the exploded storage tank. The safety management plan for the LPG storage tank was discussed while considering the auxiliary facilities of highway rest areas and the extent of the damage impact. These research results will help improve safety accident prevention regulations considering the environment and facilities of the rest areas as well as the safety management of small LPG storage tanks installed at highway rest areas.

A Study on the Estimation of Human Damage Caused by Vapor Cloud Explosion(VCE) in LPG Filling Station (LPG자동차충전소에서 증기운폭발로 인한 인명피해예측에 관한 연구)

  • Leem, Sa-Hwan;Huh, Yong-Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.15-21
    • /
    • 2010
  • The demand of gas as an eco-friendly energy source has being increased. With increasing the LPG demand, the number of LPG filling station. In this work, the influence on over-pressure caused by Vapor Cloud Explosion in gas station was calculated by using the Hopkinson's scaling law and injury effect by the accident to a human body was estimated by applying the probit model. As a result of the injury estimation conducted by using the probit model for leakage 10% of 20ton storage tank. The distances from LPG station for death and tympanum rupture are 36.5 and 290 meters, respectively.

A Study on the Quantitative Analysis and Estimation for Surround Building caused by Vapor Cloud Explosion(VCE) in LPG Filling Station (LPG충전소에서 증기운폭발이 주변건물에 미치는 영향의 정량적 해석 및 평가에 관한 연구)

  • Leem, Sa-Hwan;Huh, Yong-Jeong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.44-49
    • /
    • 2010
  • This paper is estimation of structure damage caused by Explosion in LPG(Liquefied Petroleum Gas) filling station. As we estimate the influence of damage which occur at gas storage tank in filling station. We can utilize the elementary data of safety distance. In this study, the influence of over-pressure caused by VCE(Vapor Cloud Explosion) in filling station was calculated by using the Hopkinson's scaling law and the accident damage was estimated by applying the influence on the adjacent structure into the probit model. As a result of the damage estimation conducted by using the probit model, both the damage possibility of explosion overpressure to structures of max 265 meters away and to glass bursting of 1150 meters away was nearly zero in open space explosion.