• Title/Summary/Keyword: LOx/Kerosene

Search Result 104, Processing Time 0.018 seconds

Ignition Characteristics of an Oxidizer Rich Preburner (산화제 과잉 예연소기 점화특성)

  • Moon, Il-Yoon;Moon, In-Sang;Hong, Moon-Geun;Kang, Sang-Hun;Yoo, Jae-Han;Ha, Seong-Up;Lee, Seon-Mi;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.106-109
    • /
    • 2012
  • It was designed and tested ignition that an oxidizer rich preburner for a staged combustion cycle liquid rocket engine propelled by kerosene and LOx. Operation conditions of the preburner are about 60 of OF ratio and 20 MPa of combustion pressure. Ignition characteristics were compared by propellants flowrate. As the results, the higher propellants flowrate, the shorter the ignition delay time and the higher ignition stiffness. The ignition delay time was affected by incoming the oxidizer flowrate through the refrigerative cooling channels. The oxidizer flowrate from the cooling channels decreased by inflow of combustion gas during initial ignition. The oxidizer flowrate of the cooling channels increases, it is rapid recovery by cooling effect, eventually the ignition delay time decreases.

  • PDF

Study on Pressure Fluctuations Observed in Combustion of Oxygen-Rich Preburners (산화제 과잉 예연소기 연소에서 관찰되는 압력섭동에 대한 연구)

  • Seo, Seonghyeon;Kang, Sang Hun;Lee, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.122-127
    • /
    • 2013
  • The paper includes the analytic results of pressure fluctuation data from the combustion of an oxidizer-rich preburner applicable to high-performance, closed-cycle liquid rocket engine systems. The combustion experiments went through two different steps of a chamber pressure during single run. Self-excited pressure fluctuations with a frequency of 78 Hz were observed only at the relatively low chamber pressure condition. These pressure fluctuations are regarded as a bulk mode. The intensity of pressure fluctuations by a root-mean-square value is 13.3% normalized by the chamber static pressure and no pressure excitation was observed at the design pressure condition. The bulk mode has an identical phase across the inside of the chamber and reveals the similar characteristics to the Helmholtz resonator.

Development Status and Plan of the High Performance Upper Stage Engine for a GEO KSLV (정지궤도위성용 한국형 우주발사체를 위한 고성능 상단 엔진 개발 현황 및 계획)

  • Yu, Byungil;Lee, Kwang-Jin;Woo, Seongphil;Im, Ji-Hyuk;So, Younseok;Jeon, Junsu;Lee, Jungho;Seo, Daeban;Han, Yeoungmin;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.125-130
    • /
    • 2018
  • The technology development of a high performance upper stage engine for a GEO(GEostationary Orbit) KSLV(Korea Space Launch Vehicle) is undergoing in Korea Aerospace Research Institute. KSLV is composed of an open cycle engine with gas generator, which is for a low orbit launch vehicle. However the future GEO launch vehicle requires a high performance upper stage engine with a high specific impulse. The staged combustion cycle engine is necessary for this mission. In this paper, current progress and future plan for staged combustion cycle engine development is described.

A Numerical Study on the Simulation of Power-pack Start-up of a Staged Combustion Cycle Engine (다단연소 사이클 엔진의 파워팩 시동 모사를 위한 해석적 연구)

  • Lee, Sunghun;Jo, Seonghui;Kim, Hongjip;Kim, SeongRyong;Yi, SeungJae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.58-66
    • /
    • 2019
  • In this study, the start-up characteristics of a staged combustion engine were analyzed numerically based on relational equation modeling of the entire engine components. The start-up characteristics were extensively analyzed considering the transient period of the total engine system from the start-up sequence till the steady-state of the engine. The performance characteristics of the engine components such as RPM of engine power-pack, chamber pressure and O/F ratio of pre-burner, and mass flow of propellants in the start-up period were investigated. Furthermore, the calculated engine data were compared satisfactorily with the experimental data. Through the comparison of data, successful validation of present engine start-up analysis has been obtained.