• Title/Summary/Keyword: LOWESS test

Search Result 18, Processing Time 0.024 seconds

Tendency Analysis of Water Quality in the Yeongsan River Watershed using Mann-Kendall Test (Mann-Kendall 검정기법을 이용한 영산강 수질의 경향분석)

  • Kang, Ji Eun;Park, Sung Chun;Park, Su Ho;Lee, Woo Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.442-442
    • /
    • 2021
  • 하천과 호수 등 공공수역에서 측정되는 수질자료는 수자원 및 수생태계의 실태를 파악하기 위한 가장 중요한 요소이며, 측정망 운영으로 장기간 측정된 방대한 수질자료를 이용하여 신뢰성 있는 장기 경향 추세를 분석하는 것 또한 매우 중요하다. 장기간 생산된 수질자료에 대한 통계적 경향분석을 실시함으로써 정량적으로 수질자료를 분석할 수 있는데 우선 일정한 장소에서 동일한 측정기법을 통해 비교적 장기간 동안 일정간격으로 측정된 수질자료가 필요하다. 우리나라의 수질자료는 1990년도 이후부터 잘 축적되어 왔으므로 비로소 시간에 따른 수질변화 경향을 파악하는 것이 용이해졌다. 이러한 수질경향 분석을 통하여 수체 내부에서 일어나는 여러 가지 수질 변화 과정을 이해하고 적절한 수질관리 대책을 마련할 수도 있다. 본 연구에서는 수질자료의 경향을 분석하기 위하여 비모수적 통계기법의 수질 경향을 분석하는데 많이 활용되는 맨-켄달 검정기법(Mann-Kendall Test)과 LOWESS(LOcally WEighted Scatter polt Smoother) 경향분석법을 적용하였다. 맨-켄달 검정기법은 선형 경향을 기본 가정으로하기 때문에 대상 기간 동안 경향성이 변할 경우에는 이를 적절히 반영할 수 없는 단점이 있으나 LOWESS 경향분석법은 이를 보완하기 위하여 특정회귀모델을 가정하지 않고 이동 직선에 대한 수질자료 점들을 통해 회귀모델을 적합 시키는 방법으로 기간 내 변화하는 경향성을 파악 할 수 있는 대상지점은 영산강본류 중심으로 지류지천을 포함하여 18개 지점에 대하여 분석하였으며, p-value값은 0.05를 기준으로 미만일 경우 경향성이 있고, 이상일 경우 경향성이 없는 것으로 분류하였으며, Trend는 경향성이 있다고 판단될 경우 S값이 양수이면 증가하는 경향으로, S값이 음수이면 감소하는 경향으로 판단하였다. 경향분석을 통해 영산강 18개 지점을 분석한 결과 영산강 상류와 중류, 지류에 대한 전체적인 경향을 판단할 수 있었다.

  • PDF

Comparison of Normalizations for cDNA Microarray Data

  • Kim, Yun-Hui;Kim, Ho;Park, Ung-Yang;Seo, Jin-Yeong;Jeong, Jin-Ho
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.175-181
    • /
    • 2002
  • cDNA microarray experiments permit us to investigate the expression levels of thousands of genes simultaneously and to make it easy to compare gene expression from different populations. However, researchers are asked to be cautious in interpreting the results because of the unexpected sources of variation such as systematic errors from the microarrayer and the difference of cDNA dye intensity. And the scanner itself calculates both of mean and median of the signal and background pixels, so it follows a selection which raw data will be used in analysis. In this paper, we compare the results in each case of using mean and median from the raw data and normalization methods in reducing the systematic errors with arm's skin cells of old and young males. Using median is preferable to mean because the distribution of the test statistic (t-statistic) from the median is more close to normal distribution than that from mean. Scaled print tip normalization is better than global or lowess normalization due to the distribution of the test-statistic.

  • PDF

A Nonparametric Long-Term Trend Analysis Using Water Quality Monitoring Data in Nam-River (남강 수질측정망 자료를 이용한 비모수적 장기 수질 추세 분석)

  • Jung, Kang-Young;Kim, Myojeong;Song, Kwang Duck;Seo, Kwon Ok;Hong, Seong Jo;Cho, Sohyun;Lee, Yeong Jae;Kim, Kyunghyun
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1029-1048
    • /
    • 2018
  • In this study, seasonal Mann - Kendall test method was applied to 12 stations of the water quality measurement network of Nam-River based on data of BOD, COD, TN and TP for 11 years from January 2005 to December 2015 The changes of water quality at each station were examined through linear trends and the tendency of water quality change during the study period was analyzed by applying the locally weighted scatter plot smoother (LOWESS) method. In addition, spatial trends of the whole Nam-River were examined by items. The flow-adjusted seasonal Kendall test was performed to remove the flow at the water quality measurement station. As a result, BOD, COD concentration showed "no trand" and TN and TP concentration showed "down trand" in regional Kendall test throughout the study period. BOD and TP concentration in "no trand", COD, and TN concentration showed an "up trand" tendency in Nam-River dam. LOWESS analysis showed no significant water quality change in most of the analysis items and stations, but water quality fluctuation characteristics were shown at some stations such as NR1 (Kyungho-River 1), NR2 (Kyungho-River 2), NR3 (Nam-River), NR6 (Nam-River 2A). In addition, the flow-adjusted seasonal Kendall results showed that the BOD concentration was "up trand" due to the flow at the NR3 (Nam-River) station. The COD concentration was "up trand" due to the flow at NR1 (Kyungho-River 1) and NR2 (Kyungho-River 2) located upstream of the Nam-River. The effect of influent flow on water quality varies according to each site and analysis item. Therefore, for the effective water quality management in the Nam-River, it is necessary to take measures to improve the water quality at the point where the water quality is continuously "up trand" during the study period.

Analysis of Water Quality Fluctuations in Upstream Namhan River Watershed Using Long-term Statistical Analysis (통계적 경향 분석을 통한 남한강 상류 수계 수질 변동 해석)

  • Byeon, Sang-Don;Noh, Yeon-Jung;Lim, Kyeong-Jae;Kim, Jong-Gun;Kim, Dong-Jin;Hong, Eun-Mi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.15-26
    • /
    • 2020
  • There are fifteen non-point pollution management areas in Korea and three of them (Doam lake, Daegi district and Golji-cheon) are located in the upstream of the Namhan river watershed. Many efforts to reduce non-point sources (NPS) pollution have been conducted, however, water quality pollution in the watershed is still serious. To solve these problems, it is a priority to grasp water quality using statistical techniques. In this study, a trend analysis was conducted to evaluate the effect of NPS management in the watershed. The long-term trends from 1996 to 2018 of water quality properties were analyzed using data collected from the water environment information system. Seventeen monitoring stations were selected along the main stream in Namhan river basin. Monthly water quality properties (BOD, COD, TN, TP, TN/TP ratio, Conductivity, SS and Chlorophyll-a) were collected and analyzed by Mann-Kendall test and LOWESS. The results showed that the Conductivity tended to increase in all regions and was the highest level in Jijangcheon. Organic pollution such as BOD and COD tended to increase in the Jungseon area. SS did not show a large tendency, but it showed high concentration in the Doam watershed. In all regions, 40% of water quality properties showed a tendency to 'UP', 15% of water quality properties tended to 'DOWN', and 46% indicated no tendency. In order to determine the cause of this, additional research and measures for improvement are necessary. This study will be used for the establishment of water quality policy in the future.

Long-Term Water Quality Trend Analysis of Lake Soyang Using Seasonal Mann-Kendall Test (계절 Mann-Kendall 검정을 이용한 소양호의 장기 수질 경향성 분석)

  • Yeom, Hojeong;An, Yongbin;Jung, Seyoon;Kim, Yoonseok;Kim, Bomchul;Hong, Eunmi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.25-34
    • /
    • 2024
  • The long-term monitoring of the Soyang Lake's water quality, covering 25% of the North Han River watershed, is crucial for effective management of both lake water quality and pollution sources in the broader region. This study utilized continuous monitoring data from the front of the Soyang Dam spanning 2003 to 2022, aiming to analyze trends and provide foundational insights for water quality management. Results revealed a slightly poor grade (IV) for total nitrogen (T-N) in both surface and mid-depth layers, indicating a need for concentrated T-N management. Trend analyses using the Mann-Kendall test and Sen's Slope depicted a decreasing trend in total phosphorus (T-P) for both layers, attributed to non-point source pollution reduction projects initiated after the Soyang Lake's designation as a pollution control area in 2007. The LOWESS analysis showed a T-P increase until 2006, followed by a decrease, influenced by the impact of Typhoon Ewiniar in that year. This 20-year overview establishes a comprehensive understanding of the Soyang Lake's water quality and trends, allowing for a seasonal and periodical analysis of water quality changes. The findings underscore the importance of continued monitoring and management strategies to address evolving water quality issues in the Soyang Lake over time.

Long-term Trend Analysis of Chlorophyll a and Water Quality in the Yeongsan River (통계적 경향 분석을 통한 영산강의 클로로필 a와 수질 변동 해석)

  • Song, Eun-Sook;Jeon, Song-Mi;Lee, Eo-Jin;Park, Do-Jin;Shin, Yong-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.302-313
    • /
    • 2012
  • Long-term trends (e.g. 1997~2010) of chlorophyll a and water quality properties of the Yeongsan River were analyzed by using water quality monitoring data collected by the water information system, ministry of environment. Nine monitoring stations were selected along the main channel of the river, and parameters of BOD, COD, TN, TP, conductivity, TSS and chlorophyll a were collected for surface water monthly through the monitoring system. Trends of water quality and chlorophyll a were analyzed by the Seasonal Mann-Kendall Test and LOWESS (Locally Weighted Scatter-plot Smoother). The results showed that the water quality parameters, including chlorophyll a, were improved in all stations except Station WC in the most-upper region, where water quality data for the determined parameters were increased, indicating a reduction in water quality. Based on the results from LOWESS analysis, chlorophyll a (algal blooms), BOD and COD recently began to increase after 2007 suggesting that an additional study on the cause of these increases in organic pollution, as well as a better management system for the region are required.

Improved Trend Estimation of Non-monotonic Time Series Through Increased Homogeneity in Direction of Time-variation (시변동의 동질성 증가에 의한 비단조적 시계열자료의 경향성 탐지력 향상)

  • Oh, Kyoung-Doo;Park, Soo-Yun;Lee, Soon-Cheol;Jun, Byong-Ho;Ahn, Won-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.617-629
    • /
    • 2005
  • In this paper, a hypothesis is tested that division of non-monotonic time series into monotonic parts will improve the estimation of trends through increased homogeneity in direction of time-variation using LOWESS smoothing and seasonal Kendall test. From the trend analysis of generated time series and water temperature, discharge, air temperature and solar radiation of Lake Daechung, it is shown that the hypothesis is supported by improved estimation of trends and slopes. Also, characteristics in homogeneity variation of seasonal changes seems to be more clearly manifested as homogeneity in direction of time-variation is increased. And this will help understand the effects of human intervention on natural processes and seems to warrant more in-depth study on this subject. The proposed method can be used for trend analysis to detect monotonic trends and it is expected to improve understanding of long-term changes in natural environment.

Trend Analysis of Water Quality in Dongjin River Watershed (동진강 유역의 수질 경향 분석에 관한 연구)

  • Lee, Hye-Won;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.39-47
    • /
    • 2009
  • Spatial and temporal analysis of water quality was performed for eleven monitoring stations in Dongjin River watershed in order to determine the trends of monthly water quality. The monthly water quality data of biochemical oxygen demand (BOD), total nitrogen (TN) and total phosphorus (TP) during $1995{\sim}2004$, were analyzed utilizing Seasonal Mann-Kendall test, LOWESS and three-dimensional graphic approaches. The results indicated that BOD and TN concentrations had the downward trend, but TP showed the upward trend, especially in Gobucheon. This numerical and graphic analysis is the useful tool to analyze the long-term trend of water quality in a large river system.