• Title/Summary/Keyword: LOSS MODULUS

검색결과 373건 처리시간 0.026초

건조과정에 있어서 폴리머 시멘트 모르터의 수분확산에 관한 연구 (A Study on te Water Diffusion of Polymer-Modified Mortars in Drying Process)

  • 조영국;소양섭
    • 콘크리트학회지
    • /
    • 제8권5호
    • /
    • pp.135-143
    • /
    • 1996
  • 콘크리트 및 모르터중의 수분의 확산 거동은 탄성계수, 크리프, 건축수축 등의 역학적 성질에 큰 영향을 미친다. 일반적으로 건조과정에서 폴리머 시멘트 콘크리트와 모르터의 수분의 증발에 의한 중량감소는 내부의 폴리머 필름형성에 의한 보수효과로 보통 시멘트 콘크리트 및 모르터에 비해 월등히 적다. 본 연구는 폴리머 시멘트 모르터 내부의 수분의 확산 과정을 확인하기 위하여 3종류의 폴리머디스퍼션과 에폭시 수지를 사용한 폴리머 시멘트 모르터를 제조하여 건조조건에 따른 수분의 확산 정도를 확산계수로 평가하였다. 실험결과, 폴리머 시멘트 모르터의 수분확산은 보통 시멘트 모르터에 비하여 아주 적었으며 폴리머 시멘트비에 따라 감소하였다.

공작기계 강철-복합재료 하이브리드 헤드스톡의 설계 및 제작 (Design and Manufacture of the Steel-Composite Hybrid Headstock for Machine Tools)

  • 최진경;장승환;김포진;이대길;김태형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.831-836
    • /
    • 2000
  • During machining, since more than 50% compliance of the cutting point in machine tool structures comes from headstocks, with the remainder coming from beds, slides and structural joints, the structural analysis of the headstock is very important to improve the static and dynamic performances. Especially, in case of machining hard and brittle materials such as glasses and ceramics with the grinding machine, the reinforced headstock with the high damping material is demanded. Since the fiber reinforced composite materials have excellent properties for structures, owing to its high specific modulus, high damping and low thermal expansion, it is expected that the dynamic and thermal characteristics of the headstock will be improved if they are employed as the materials fur headstock. In this paper, the design and the manufacturing methods as well as the static and dynamic characteristics of a steel-composite hybrid headstock were investigated analytically and experimentally to improve the performance of the grinding machine system.

  • PDF

아세토페논을 함유한 Poly(phenylene sulfide)의 광가교에 의한 내열성과 인장인성 강화 (The Improvement of Thermal Stability and Tensile Toughness by the Photocrosslinking of Poly(phenylene sulfide) containing Acetophenone)

  • 장용준;장진호
    • 한국염색가공학회지
    • /
    • 제24권4호
    • /
    • pp.281-287
    • /
    • 2012
  • Poly(phenylene sulfide) films containing acetophenone as a photoinitiator were photocrosslinked under UV irradiation using a continuous UV irradiator. The gel fraction of the irradiated PPS in 1-Chloro naphthalene reached 94.7% with increasing UV energy and the photoinitiator concentration in the film upto $200J/cm^2$ and 12wt% respectively. Solid state $^1C$ NMR analysis suggested that the crosslinking occurred between the phenylene chains in PPS, indicating that the acetophenone may the phenylene hydrogens and subsequently adjacent polymer radicals could be recombined to form the crosslinked structure. The crosslinking improved the thermal behavior of PPS such as loss of $T_g$ and $T_c$, higher melting point and lower melting enthalphy as well as significantly higher peak pyrolysis temperature as much as $63.5^{\circ}C$. Surprisingly the tensile toughness of the most crosslinked PPS increased by 842%, resulting from the substantial enhancements in tensile modulus, strength and strain as much as 76%, 236% and 240% respectively. Also dynamic mechanical measurement indicated that the distance between crosslinks in the crosslinked PPS reached 85.3 g/mol corresponing to a crosslink density of 0.012 mol/g.

$Pb(Y_{2/3}W_{1/3})O_3-Pb(Zr,Ti)O_3$계 세라믹스의 고출력 특성 (High Power Characteristics of $Pb(Y_{2/3}W_{1/3})O_3-Pb(Zr,Ti)O_3$Ceramics)

  • 윤석진
    • 한국전기전자재료학회논문지
    • /
    • 제11권5호
    • /
    • pp.394-399
    • /
    • 1998
  • High power characteristics with vibration velocity were studied in $Pb(Y_{2/3}W_{1/3})O_3-Pb(Zr,Ti)O_3$(PYW-PZT) ceramics by using the constant current method. Young s modulus $Y_0^E$ and mechanical quality factor $Q_m$ are a function of the square of effective vibration velocity \upsilon_0$. The nonlinear proportional constants of the above functions indicate the degree of stability under the vibration level change. The stability of PYW-PZT ceramics estimated by these constants coincides with the results obtained through the heat generation. It was found that $Q_m$ was markedly decreased with increasing the vibration velocity, accompanying a lot of heat generation. The vibration hysteresis and dielectric loss according to the vibration velocity was reduced by doping $Fe_2O_3$to the ceramics. On the contrary, these losses was increased by doping $Nb_2O_5$.

  • PDF

Rotational capacity of H-shaped steel beams under cyclic pure bending

  • Jia, Liang-Jiu;Tian, Yafeng;Zhao, Xianzhong;Tian, Siyuan
    • Steel and Composite Structures
    • /
    • 제30권2호
    • /
    • pp.123-140
    • /
    • 2019
  • This paper presents experimental study on effects of width-to-thickness ratio and loading history on cyclic rotational capacity of H-shaped steel beams subjected to pure bending. Eight Class 3 and 4 H-shaped beams with large width-to-thickness ratios were tested under four different loading histories. The coupling effect of local buckling and cracking on cyclic rotational capacity of the specimens was investigated. It was found that loss of the load-carrying capacity was mainly induced by local buckling, and ductile cracking was a secondary factor. The width-to-thickness ratio plays a dominant effect on the cyclic rotational capacity, and the loading history also plays an important role. The cyclic rotational capacity can decrease significantly due to premature elasto-plastic local buckling induced by a number of preceding plastic reversals with relative small strain amplitudes. This result is mainly correlated with the decreasing tangent modulus of the structural steel under cyclic plastic loading. In addition, a theoretical approach to evaluate the cyclic rotational capacity of H-shaped beams with different width-to-thickness ratios was also proposed, which compares well with the experimental results.

시공정밀도에 따른 비구조용 콘크리트벽돌 조적벽체의 프리즘 압축강도 (Prism Compressive Strength of Non-structural Concrete Brick Masonry Walls According to Workmanship)

  • 신동현;김형준
    • 대한건축학회논문집:구조계
    • /
    • 제36권2호
    • /
    • pp.127-136
    • /
    • 2020
  • Prism compressive strength is the most influential parameter to evaluate the seismic performance of non-structural concrete brick masonry walls, and is affected by the practice and workmanship of masonry workers. This study experimentally investigates the influence of workmanship on prism compressive strength throughout the compressive test with prism specimens constructed according to masonry workmanship. To do this, the workmanship is categorized into good, fair, and poor conditions which are statistically evaluated with thickness and indentation depth of bed-joints. Then, the effect of workmanship on the structural properties of masonry prisms is evaluated by investigating relations between properties such as their compressive strength, elastic modulus and numerical parameters such as thickness, filling of bed-joints. This study demonstrates that the indentation depth is more important parameter for structural properties of masonry prisms and masonry prisms with loss in bed-joint area less than of 7% can be in fair condition.

Mechanical and Thermal Properties of Liquefied Wood Polymer Composites (LWPC)

  • Hyun, Doh Geum;Kang, In Aeh;Lee, Sun Young;Kong, Young To
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권6호
    • /
    • pp.67-73
    • /
    • 2004
  • The influence of liquefied wood (LW) on the mechanical and thermal properties of liquefied wood-polymer composites (LWPC) was investigated in this study. The thermal behaviors of LWPC were characterized by means of thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. LW showed significant effects on the mechanical strength properties. The increase of flexural MOE and Young's modulus was related to the increase of stiffness of LWPC. The effect of LW was also significant on the flexural and tensile MOR. The impact strength decreased with the increase of LW application level. With the increased stress concentration by the poor bonding between LW and polymer, the impact strength of LWPC decreased, compared with that of high-density polyethylene (HDPE). The thermal stability of LWPC decreased with the increase of LW content up to 40%. The melting temperature of HDPE decreased with the increase of LW loading level. Enthalpy of HDPE also decreased with the addition of LW. This study proves the thermal stability necessary for the consolidation of composition materials.

Seismic equivalent linear response of a structure by considering soil-structure interaction: Analytical and numerical analysis

  • Maroua Lagaguine;Badreddine Sbartai
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.173-189
    • /
    • 2023
  • For a given structural geometry, the stiffness and damping parameters of the soil and the dynamic response of the structure may change in the face of an equivalent linear soil behavior caused by a strong earthquake. Therefore, the influence of equivalent linear soil behavior on the impedance functions form and the seismic response of the soil-structure system has been investigated. Through the substructure method, the seismic response of the selected structure was obtained by an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. Also, the dynamic response of the soil-structure system for a nonlinear soil behavior and for the two types of impedance function forms was also analyzed by 2D finite element modeling using ABAQUS software. The numerical results were compared with those of the analytical solution. After the investigation, the effect of soil nonlinearity clearly showed the critical role of soil stiffness loss under strong shaking, which is more complex than the linear elastic soil behavior, where the energy dissipation depends on the seismic motion amplitude and its frequency, the impedance function types, the shear modulus reduction and the damping increase. Excellent agreement between finite element analysis and analytical results has been obtained due to the reasonable representation of the model.

Investigation of the effect of internal curing as a novel method for improvement of post-fire properties of high-performance concrete

  • Moein Mousavi;Habib Akbarzadeh Bengar
    • Computers and Concrete
    • /
    • 제33권3호
    • /
    • pp.309-324
    • /
    • 2024
  • Internal curing, a widely used method for mitigating early-age shrinkage in concrete, also offers notable advantages for concrete durability. This paper explores the potential of internal curing by partial replacement of sand with fine lightweight aggregate for enhancing the behavior of high-performance concrete at elevated temperatures. Such a technique may prove economical and safe for the construction of skyscrapers, where explosive spalling of high-performance concrete in fire is a potential hazard. To reach this aim, the physico-mechanical features of internally cured high-strength concrete specimens, including mass loss, compressive strength, strain at peak stress, modulus of elasticity, stress-strain curve, toughness, and flexural strength, were investigated under different temperature exposures; and to predict some of these mechanical properties, a number of equations were proposed. Based on the experimental results, an advanced stress-strain model was proposed for internally cured high-performance concrete at different temperature levels, the results of which agreed well with the test data. It was observed that the replacement of 10% of sand with pre-wetted fine lightweight expanded clay aggregate (LECA) not only did not reduce the compressive strength at ambient temperature, but also prevented explosive spalling and could retain 20% of its ambient compressive strength after heating up to 800℃. It was then concluded that internal curing is an excellent method to enhance the performance of high-strength concrete at elevated temperatures.

모르타르의 동결융해 피해에 미치는 폴리프로필렌 섬유의 영향 (Effect of Polypropylene Fiber on the Freeze-Thaw Damage of Mortar)

  • 유재철;김규용;이상규;황의철;남정수
    • 한국건설순환자원학회논문집
    • /
    • 제7권4호
    • /
    • pp.438-444
    • /
    • 2019
  • 본 연구에서는 모르타르의 동결융해피해에 미치는 폴리프로필렌섬유의 영향을 실험적으로 검토하였다. 섬유를 혼입하지 않은 섬유무보강 모르타르와 폴리비닐알코올섬유를 혼입한 모르타르를 비교 대상으로 하여 폴리프로필렌섬유의 혼입이 300사이클의 동결융해시험 후 모르타르의 압축 및 휨특성에 미치는 영향을 평가하였다. 또한, 300사이클의 동결융해 시험 후 모르타르의 질량감소율, 상대동탄성계수 및 공극크기분포에 대한 시험을 실시하였다. 그 결과, 섬유종류에 관계없이 섬유무혼입 모르타르에 비해 섬유혼입 모르타르는 300사이클의 동결융해시험 후 압축강도 및 휨강도의 역학적 성능저하와 질량감소율의 증가를 억제하는 것이 가능했다. 한편, 300사이클의 동결융해시험 후 모르타르의 공극감소에 대한 저항에 폴리비닐알코올섬유뿐만 아니라 폴리프로필렌섬유가 효과적으로 작용할 수 있는 것을 확인했으나 폴리프로필렌섬유를 혼입한 모르타르의 동결융해저항성을 향상시키기 위해서는 폴리비닐알코올섬유에서 기대할 수 있는 시멘트매트릭스와의 결합효율을 증가시킬 필요가 있다.