• Title/Summary/Keyword: LONG-TERM ECOLOGICAL RESEARCH

Search Result 233, Processing Time 0.024 seconds

A case study of ECN data conversion for Korean and foreign ecological data integration

  • Lee, Hyeonjeong;Shin, Miyoung;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • v.41 no.5
    • /
    • pp.142-144
    • /
    • 2017
  • In recent decades, as it becomes increasingly important to monitor and research long-term ecological changes, worldwide attempts are being conducted to integrate and manage ecological data in a unified framework. Especially domestic ecological data in South Korea should be first standardized based on predefined common protocols for data integration, since they are often scattered over many different systems in various forms. Additionally, foreign ecological data should be converted into a proper unified format to be used along with domestic data for association studies. In this study, our interest is to integrate ECN data with Korean domestic ecological data under our unified framework. For this purpose, we employed our semi-automatic data conversion tool to standardize foreign data and utilized ground beetle (Carabidae) datasets collected from 12 different observatory sites of ECN. We believe that our attempt to convert domestic and foreign ecological data into a standardized format in a systematic way will be quite useful for data integration and association analysis in many ecological and environmental studies.

THE WATERSHED MANAGEMENT AND ASSESSMENT USING GIS BASED ON HYDROLOGICAL AND LANDSCAPE ECOLOGICAL ANALYSIS

  • Lee, Ju-Young;Hopkins, James
    • Water Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.9-20
    • /
    • 2006
  • The watersheds are functional geographical areas that integrate a variety of environmental and ecological processes and human impacts on landscapes. Geographical assessments using GIS recognize the relationship between interdependence of resources and ecological/environmental components in watersheds. They are useful methodology for viable long term natural resource management. This paper performs through the using hydrological analyses, landscape ecological analyses, remote sensing, and GIS. Indicators are items or measures that represent key components of the small watersheds, and they are developed to be evaluated. Some indicators are described that they represent watershed condition and trend as well as focus on physical, biological and chemical properties of small watershed. Also, ecological functions such as stability, resilience, and sensitivity are inferred from them. The model implemented in GIS allows to reflect the ecological and hydrological functioning of watershed. Methodology from image analysis, landscape ecological analysis, spatial interpolation, and numerical process modeling are integrated within GIS to provide assessment for eco-logical/environmental condition. Results are described from the small watershed of Gwynns Falls in Baltimore County and Baltimore City, Maryland, an area of about 66.5 square miles. The small watershed within Gwynns Falls watershed are subject to a number of land-use. But it is predominantly urban, with significantly lesser amounts of forest and agriculture. The increasing urbanization is ass-coiated with ecological/environmental impacts and citizen conflicts.

  • PDF

Analysis of ecological characteristic variations of small yellow croaker (Larimichthys polyactis) in Korea using long-term time series data (장기간 시계열 자료를 활용한 우리나라 참조기(Larimichthys polyactis) 자원의 생태학적특성 변동 분석)

  • Moo-Jin KIM;Heejoong KANG;Sang Chul YOON
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.3
    • /
    • pp.235-243
    • /
    • 2024
  • Researching and estimating the ecological characteristics of target fish species is crucial for fisheries resource management. The results of these estimates significantly influence stock assessments and management reference points such as size limit and closed seasons. Recently, ecological characteristics have been changing due to overfishing, climate change, and marine pollution, making continuous estimation and monitoring essential. This study analyzed the ecological changes in small yellow croaker (Larimichthys polyactis) resources in Korea over 24 years (2000-2023) using biological data (growth and gonad traits). By estimating the annual length-weight relationship and length at maturity (L50 and L95), we interpreted the numerical trends of early maturation due to resource depletion. The parameter b of the length-weight relationship, indicating the nutritional status of the resources, showed a slight increase over the years, suggesting relatively good nutritional status (b > 3.0) during most periods. Trend analysis between length at maturity and biomass indicated that as biomass decreased, maturity length also decreased.

Lessons from constructing and operating the national ecological observatory network

  • Christopher McKay
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.187-192
    • /
    • 2023
  • The United States (US) National Science Foundation's (NSF's) National Ecological Observatory Network (NEON) is a continental-scale observation facility, constructed and operated by Battelle, that collects long-term ecological data to better understand and forecast how US ecosystems are changing. All data and samples are collected using standardized methods at 81 field sites across the US and are freely and openly available through the NEON data portal, application programming interface (API), and the NEON Biorepository. NSF led a decade-long design process with the research community, including numerous workshops to inform the key features of NEON, culminating in a formal final design review with an expert panel in 2009. The NEON construction phase began in 2012 and was completed in May 2019, when the observatory began the full operations phase. Full operations are defined as all 81 NEON sites completely built and fully operational, with data being collected using instrumented and observational methods. The intent of the NSF is for NEON operations to continue over a 30-year period. Each challenge encountered, problem solved, and risk realized on NEON offers up lessons learned for constructing and operating distributed ecological data collection infrastructure and data networks. NEON's construction phase included offices, labs, towers, aquatic instrumentation, terrestrial sampling plots, permits, development and testing of the instrumentation and associated cyberinfrastructure, and the development of community-supported collection plans. Although colocation of some sites with existing research sites and use of mostly "off the shelf" instrumentation was part of the design, successful completion of the construction phase required the development of new technologies and software for collecting and processing the hundreds of samples and 5.6 billion data records a day produced across NEON. Continued operation of NEON involves reexamining the decisions made in the past and using the input of the scientific community to evolve, upgrade, and improve data collection and resiliency at the field sites. Successes to date include improvements in flexibility and resilience for aquatic infrastructure designs, improved engagement with the scientific community that uses NEON data, and enhanced methods to deal with obsolescence of the instrumentation and infrastructure across the observatory.

Preliminary Diagnosis for Pulsing Simulation of Low Trophic Ecosystem by Environmental Changes in Coastal Area (연안해역의 환경변화에 따른 저차 생태계 Pulsing Simulation 예비 진단)

  • Lee, Dae-In
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.461-468
    • /
    • 2012
  • In general, long-term changes of ecological factors take a pulse form in which they interact with other factors and go through a repeated increasing and decreasing cycle. The coupling of the two approaches the grid model and the box model in ecological modeling can lead to an in-depth understanding of the environment. The study analyzes temporal variations of major storages with an energy system model that formulizes effectively the relationships among nutrients, phytoplankton, and zooplankton in the Yellow Sea and the East China Sea. An increase of light intensity and standing stock of nutrient increase the magnitude and frequency of pulsing. Also, an immense reduction of nutrient concentration can cause extinction of the pulsing and bring about a steady state. It is concluded that the nutrient loads in freshwater discharge from the Yangtze affect the cycles of major ecological components as well as water quality variables and play an important role in the marine ecosystem.

Health risk assessment by CRPS and the numerical model for toluene in residential buildings

  • Choi, Haneul;Kim, Hyungkeun;Kim, Taeyeon
    • KIEAE Journal
    • /
    • v.17 no.5
    • /
    • pp.33-41
    • /
    • 2017
  • Purpose: Indoor air quality in residential buildings needs to be evaluated over the long term. In previous research, there has been an attempt to perform the health risk assessment of pollutants by using numerical models as a method of long-term evaluation. However, the numerical model of this precedent study has limitations that do not reflect the actual concentration distribution. Therefore, this study introduces the CRPS index, constructs a numerical model that can reflect the concentration distribution, and then presents a more accurate health risk assessment method using it. At this time, the pollutants are toluene, which is a typical material released from building materials. Method: CRPS index was applied to existing numerical model to reflect concentration distribution. This was used to calculate concentrations at adult breathing area and to use them for exposure assessment in a health risk assessment. After that, we entered adult data and conducted a health risk assessment of toluene. Results: The non-carcinogenic risk of toluene was calculated to be 0.0060. This is 5% smaller than the existing numerical model, meaning that it is more accurate to predict the pollutant risks. This value is also lower than the US EPA reference value of 1. Therefore, under the conditions of this study, long-term exposure of adults to toluene has no impact on health.

Ecological Characteristics and Long-term Variation of Fish Community in Lake Paldang and its Tributaries (팔당호 어류군집의 생태특성 및 장기 변동)

  • Park, Hae-Kyung;Lee, Jangho;Choi, Myung-Jae;Yun, Seuk-Hwan;Song, Ho-Bok;Lee, Kyoo;Youn, Seok Jea;Shin, Kyungae;Byeon, Myeong-Seop;Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.951-963
    • /
    • 2009
  • The community structure and ecological characteristics of fish community in Lake Paldang were investigated from May to September 2008. During the survey period, 53 species belonging to 13 families were collected. Dominant species was Squalidus japonicus coreanus representing 81.8% of total number and 25.7% of total biomass of collected fish and subdominant species was Lepomis macrochirus representing 3.3% of total number and 18.9% of total biomass of collected fish. There were 20 Korean endemic species (38% of collected species number) including Cottus koreanus and 4 exotic species (7.5%) including Micropterus salmoides. The similarity analysis of fish communities among water areas of Lake Paldang using UPGMA showed that fish community of North-Han River was similar to that of South-Han River area and was different from that of Gyeongan River area. Long-term variation of fish community from 1972 to present study in Lake Paldang showed decrease of the species numbers after dam construction until 1994, and gradual increase from 1996 to present study indicating the disturbance of lentic system by dam construction in the 1980s. The increase of species number in the late 2000s may results in part from the increase of survey sites of successive studies. L. macrochirus which was designated as a domestic ecosystem-disturbing alien species with wide food niche have shown more than 20% of relative abundance since 1996 indicating the adverse effect on not only fish community but also aquatic ecosystem food web of Lake Paldang.

Assessing Phosphorus Availability in a High pH, Biochar Amended Soil under Inorganic and Organic Fertilization

  • Kahura, Millicent Wanjiku;Min, Hyungi;Kim, Min-Suk;Kim, Jeong-Gyu
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • Phosphorous remains as one of the most limiting nutrients to plant growth, second only to nitrogen. Research on use of biochar as a soil amendment for available phosphorus in temperate calcareous soils has limited studies compared with to tropical acidic soils. An incubation experiment to assess phosphorous availability in a biochar amended calcareous soil under inorganic (Fused superphosphate, FSP) and organic fertilizer (bone meal, BM) and respectively, at the dose of 40, 80 and $120mg\;P\;kg^{-1}$ was carried out. Soil was incubated at $25^{\circ}C$ for 70 days. Results show that the rate of increase in available P was proportional to the fertilizer application rate with or without biochar amendment. Biochar did not have a significant effect on soils amended with either fertilizeron the values of available P. However, time had a significant effect (p<0.001) on the amount of available P during the incubation period. Inorganic fertilizer treatments had recorded high amount of available P with time compared to organic fertilizer treatments. Organic fertilizer treatment sample were significantly not different from control and for most of the incubation time biochar acted as a soil conditioner. Further research is required to understand the holistic and long-term effect of biochar.

The US National Ecological Observatory Network and the Global Biodiversity Framework: national research infrastructure with a global reach

  • Katherine M. Thibault;Christine M, Laney;Kelsey M. Yule;Nico M. Franz;Paula M. Mabee
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.219-227
    • /
    • 2023
  • The US National Science Foundation's National Ecological Observatory Network (NEON) is a continental-scale program intended to provide open data, samples, and infrastructure to understand changing ecosystems for a period of 30 years. NEON collects co-located measurements of drivers of environmental change and biological responses, using standardized methods at 81 field sites to systematically sample variability and trends to enable inferences at regional to continental scales. Alongside key atmospheric and environmental variables, NEON measures the biodiversity of many taxa, including microbes, plants, and animals, and collects samples from these organisms for long-term archiving and research use. Here we review the composition and use of NEON resources to date as a whole and specific to biodiversity as an exemplar of the potential of national research infrastructure to contribute to globally relevant outcomes. Since NEON initiated full operations in 2019, NEON has produced, on average, 1.4 M records and over 32 TB of data per year across more than 180 data products, with 85 products that include taxonomic or other organismal information relevant to biodiversity science. NEON has also collected and curated more than 503,000 samples and specimens spanning all taxonomic domains of life, with up to 100,000 more to be added annually. Various metrics of use, including web portal visitation, data download and sample use requests, and scientific publications, reveal substantial interest from the global community in NEON. More than 47,000 unique IP addresses from around the world visit NEON's web portals each month, requesting on average 1.8 TB of data, and over 200 researchers have engaged in sample use requests from the NEON Biorepository. Through its many global partnerships, particularly with the Global Biodiversity Information Facility, NEON resources have been used in more than 900 scientific publications to date, with many using biodiversity data and samples. These outcomes demonstrate that the data and samples provided by NEON, situated in a broader network of national research infrastructures, are critical to scientists, conservation practitioners, and policy makers. They enable effective approaches to meeting global targets, such as those captured in the Kunming-Montreal Global Biodiversity Framework.