• Title/Summary/Keyword: LOFAR

Search Result 11, Processing Time 0.037 seconds

Lofargram fusion methods based on local anisotropy (국부 비등방성에 기반한 LOFAR그램 융합 방법)

  • Kim, Juho;Ahn, Jae-Kyun;Cho, Chomgun;Lee, Chul Mok;Hwang, Soobok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.128-138
    • /
    • 2019
  • In this paper, we present fusion methods for two different lofargrams. Since the conventional method synthesizes the lofargrams using frequency spectrum, it has limited performance in fusion of tonal signals which have two-dimensional information of the time-frequency domain. Proposed algorithm uses a two-dimensional directional bilateral filter for preprocessing and fuses two lofargrams based on comparison of local anisotropy of the lofargrams. After noise is suppressed and tonals are sharpened, the local anisotropy can be used as a criterion to divide tonals and noise. The experiment results using simulated data and real data showed that the proposed algorithms result in similar or lower noise level of the fused lofargram than conventional algorithms and decrease tonal omission in fusion process.

LOFAR/DEMON grams compression method for passive sonars (수동소나를 위한 LOFAR/DEMON 그램 압축 기법)

  • Ahn, Jae-Kyun;Cho, Hyeon-Deok;Shin, Donghoon;Kwon, Taekik;Kim, Gwang-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.38-46
    • /
    • 2020
  • LOw Frequency Analysis Recording (LOFAR) and Demodulation of Envelop Modulation On Noise (DEMON) grams are bearing-time-frequency plots of underwater acoustic signals, to visualize features for passive sonar. Those grams are characterized by tonal components, for which conventional data coding methods are not suitable. In this work, a novel LOFAR/DEMON gram compression algorithm based on binary map and prediction methods is proposed. We first generate a binary map, from which prediction for each frequency bin is determined, and then divide a frame into several macro blocks. For each macro block, we apply intra and inter prediction modes and compute residuals. Then, we perform the prediction of available bins in the binary map and quantize residuals for entropy coding. By transmitting the binary map and prediction modes, the decoder can reconstructs grams using the same process. Simulation results show that the proposed algorithm provides significantly better compression performance on LOFAR and DEMON grams than conventional data coding methods.

Research on Synthesis of Radiation Noise from Moving Target (이동하는 표적의 방사소음 합성기법 연구)

  • 배재휘
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.58-65
    • /
    • 2000
  • A target signal simulation method for passive sonar systems is introduced. The method uses multirate signal processing techniques to simulate moving target signals in the multi-path sound propagation environment by introducing Lloyd's mirror and Doppler effect. Time and frequency variation of target signal due to the target maneuvering is also considered to provide realistic ship signatures in the LOFAR gram so that the simulated target is used for sonar operator training. Synthesized target characteristics is analyzed and compared with real target signal in terms of interference pattern and frequency variation in the LOFAR gram.

  • PDF

Separation of passive sonar target signals using frequency domain independent component analysis (주파수영역 독립성분분석을 이용한 수동소나 표적신호 분리)

  • Lee, Hojae;Seo, Iksu;Bae, Keunsung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.110-117
    • /
    • 2016
  • Passive sonar systems detect and classify the target by analyzing the radiated noises from vessels. If multiple noise sources exist within the sonar detection range, it gets difficult to classify each noise source because mixture of noise sources are observed. To overcome this problem, a beamforming technique is used to separate noise sources spatially though it has various limitations. In this paper, we propose a new method that uses a FDICA (Frequency Domain Independent Component Analysis) to separate noise sources from the mixture. For experiments, each noise source signal was synthesized by considering the features such as machinery tonal components and propeller tonal components. And the results of before and after separation were compared by using LOFAR (Low Frequency Analysis and Recording), DEMON (Detection Envelope Modulation On Noise) analysis.

A Study for Tonal Signal Automatic Classification of Ship-Radiated Noise (선박 방사소음의 Tonal 신호 자동분류에 관한 연구)

  • Lee, Phil-Ho;Park, Kyu-Chil;Yoon, Jong-Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.599-607
    • /
    • 2006
  • The ship radiated noise appear the various characteristic signals due to the mechanic system in the ship, the propeller and the interaction between ship body and sea water. Generally, it is classified two main components: the speed dependent signal and the speed independent signal. It is required that very complex procedure to classify the signal origin from the ship-radiated noise. This paper presents techniques to automatically detect and classify the tonal signals ken the ship-radiated noise, using the Q factor and the neural network.

Simulating Rotation Measure toward High Galactic Latitude

  • Akahori, Takuya;Ryu, Dong-Su;Kim, Jong-Soo;Gaensler, Bryan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.116.2-116.2
    • /
    • 2011
  • We investigate Faraday rotation measure (RM) toward high Galactic latitudes due to the Galactic magnetic field (GMF). The Galactic contribution to RM comes from the global component and the turbulent component of the GMF, and we newly model the latter by incorporating data of MHD turbulence simulations. We find that for the turbulent velocity of ~50 km/s, the standard deviation of the RM due to the GMF toward high Galactic latitudes is close to the observed value, several rad m^{-2}. Yet, the predicted second-order structure function (SF) has values substantially smaller than the observed ones at separation angles of <~ several degree. This suggests that the intergalactic magnetic field (IGMF) significantly contributes to RM toward high Galactic latitudes, particularly at small angular scales. Our work proposes a strategy for surveys to explore the IGMF with LOFAR, ASKAP, MeerKAT, and SKA.

  • PDF

Modeling the Galactic Rotation Measure at High Galactic Latitude Using MHD Turbulence Simulations

  • Akahori, Takuya;Ryu, Dong-Su;Kim, Jong-Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.85.1-85.1
    • /
    • 2011
  • Recently, Faraday rotation measure (RM) at high Galactic latitude has been investigated, partly to explore the Galactic magnetic fields and partly to study the extragalactic magnetic fields. The Galactic contribution to RM comes from the global component as well as the turbulent component. So far the turbulent field was used to be analytically modeled with a Kolmogorov-type power spectrum. Here, we present the initial results of the work where the turbulent field is modeled using data of MHD turbulence simulations. Our work is intended to be applied to simulations of RM surveys with LOFAR, ASKAP, MeerKAT, and SKA.

  • PDF

Faraday Rotation Measure and Cosmic Magnetic Field

  • Cho, Hyunjin;Ryu, Dongsu;Ha, Ji-hoon;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.39.3-40
    • /
    • 2021
  • The Faraday rotation measure (RM) of extragalactic radio sources is one of tools that can explore the magnetic field in the cosmic web. We have investigated the statistical properties of the RM using the data of simulations for the large-scale structure formation of the universe. Various modelings for the cosmic magnetic field including the redshift dependence, and the intrinsic RM of radio sources have been considered. We here present the structure functions (SFs) of simulated RMs for small angular separations, and compare the SFs with observations, specifically those from the NRAO VLA Sky Survey (NVSS) and LOFAR Two-Metre Sky Survey (LoTSS). We then discuss the implications of our work.

  • PDF

Faraday Rotation Measure in the Large Scale Structure III

  • Akahori, Takuya;Ryu, Dong-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.75.1-75.1
    • /
    • 2010
  • The nature and origin of the intergalactic magnetic field (IGMF) are an outstanding problem of cosmology, yet they are not well understood. Measuring Faraday rotation (RM) is one of a few promising methods to explore the IGMF. We have theoretically investigated RM using a model of the IGMF based on a MHD turbulence dynamo (Ryu et al. 2008; Cho et al. 2009). In the previous KAS meeting, we reported the results for the present-day local universe; for instance, the probability distribution function (PDF) of ${\mid}RM{\mid}$ follows the lognormal distribution, the root mean square (rms) value for filaments is ~1 rad m^{-2}, and the power spectrum peaks at ~1 h^{-1} Mpc scale. In this talk, we extend our study of RM; by stacking simulation data up to redshift z=5 and taking account of the redshift distribution of radio sources, we have reproduced an observable view of RM through filaments against background radio sources. Our findings are as follows. The inducement of RM is a random walk process, so that the rms of RM increases with increasing path length. The rms value of RM for filaments reaches several rad m^{-2}. The PDF still follows the lognormal distribution, and the power spectrum of RM peaks at less than degree scale. Our predictions of RM could be tested, for instance, with LOFAR, ASKAP, MEERKAT, and SKA.

  • PDF