• Title/Summary/Keyword: LOCOMOTION DISTANCE

Search Result 26, Processing Time 0.035 seconds

A Design of a Mobile Robot for Blind Guidance (맹인 안내용 모빌로보트의 설계)

  • 유상열;이응혁
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.33-42
    • /
    • 1985
  • In this paper, a mobile robot is designed for the blind guidance. This system is composed of an Ultrasonic Ranging Vnit, PWM Vnit, Optical Encoder Vnit. Specilly we adapted Distance Comparison Measurement Method (DCMM) in order to compensate for the error resulted from atmospheric conditions, and PWM unit for the vehicle control and Optical encoder unit for the correct locomotion control. This system is processed, using MCS-85 microcomputer, much of information on surrounding conduitions in real time. We rotated ultrasonic sensor for many sifted data acquisition and used tone generator for the Man-Machine Communication. As a result, the measurement error of the distance is about 1cm, the distance measurement could be detected 0.2m to 6m. The locomotion speed is 0.4m/sec and we examined its practical use.

  • PDF

Stair Locomotion Method of Quadruped Robot Using Genetic Algorithm (유전 알고리즘을 이용한 4족 로봇의 계단 보행 방법)

  • Byun, Jae-Oh;Choi, Yoon-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.9
    • /
    • pp.1039-1048
    • /
    • 2015
  • In this paper, we propose an efficient stair locomotion method for a quadruped robot with mechanism of insectile legs using genetic algorithm(GA). In the proposed method, we first define the factors and the reachable region for the stair locomotion. In addition, we set the gene and the fitness function for GA and generate the gait trajectory by searching the landing position of a quadruped robot, which has the minimun distance of movement and the optimal energy stability margin(ESM). Finally, we verify the effectiveness and superiority of the proposed stair locomotion method through the computer simulations.

Ecological Studies on the Sand Dollar, Astriclypeus manni (Verril 1867) - Feeding, Density and Locomotion (구멍연잎성게, Astriclypeus manni(VERRIL 1867)의 먹이섭취, 서식밀도 및 이동속도에 관하여)

  • 강도형;최광식
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.2
    • /
    • pp.180-188
    • /
    • 2002
  • Sand dollar, Astriclypeus manni (Echinodermata: Echinoidea) is widely distributed on subtidal sand flats all along the coast of Cheju Island. Limited information has been reported on their ecology despite their abundance. This study reports gut contents, density and locomotion of the sand dollars distributed on a subtidal sand flat on the north-east coast of Cheju Island. Microscopic examination of the gut contents indicated that A. manni feeds on inorganic and organic detritus as well as live organisms contained in the sediments. Inorganic particles included sand grains, sponge spicules and shells of benthic animals such as foraminifera, crustacean and molluscs. Mean diameter of sediment particles retained in the gut was $77.6\pm{22.2}\mu{m}$. Live organisms retained in the gut included foraminifera, harpacticoid copepods, nematodes, diatoms and unidentified egg. Spatial distribution pattern of the sand dollar was found to be random with a mean density of 0.4 individual $m^{-2}(\chi^2=85.16,\;p>0.05)$. Locomotion speed of the sand dollar measured in situ was 2.0 to 65.0 cm $hr^{-1}$. Locomotion speed and moving distance was somewhat higher in summer when food availability also higher.

Development of Cost-Effective Platform for Tracking and Analysis of Animal Ambulatory Patterns

  • Kwon, Jeonghoon;Park, Hong Ju;Joo, Segyeong;Huh, Soo-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.82-86
    • /
    • 2014
  • This paper reports the development of a platform for tracking and analysis of animal locomotion. The platform is composed of a commercial webcam, a metal stand for the webcam, and a plastic bathtub as a cage. Using it, researchers can track and analyze an animal's movement within the plastic bathtub's dimensions of $100cm{\times}100cm{\times}55cm$ in a cost-effective manner. After recording the locomotion of an animal with $1920{\times}1080$ resolution at a rate of 30 frames per second, finding the position of the animal in each frame and analyzing the ambulation pattern were executed with custom software. To evaluate the performance of the platform, movements of imprinting control region mice and transgenic mice were recorded and analyzed. The analysis successfully compared velocity, moving pattern, and total moving distance for the two mouse groups. In addition, the developed platform can be used not only in simple motion analysis but also in various experimental conditions, such as a water maze, by easy customization of the platform. Such a simple and cost-effective platform yields a powerful tool for animal ambulatory analysis.

Grazing Behavior and Locomotion of Young Bulls Receiving Different Nutritional Plans in a Tropical Pasture

  • Valente, E.E.L.;Paulino, M.F.;Detmann, E.;Filho, S.C. Valadares;Chizzotti, M.L.;Silva, A.G.;Maciel, I.F.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.12
    • /
    • pp.1717-1725
    • /
    • 2013
  • The objectives of this study were to compare visual observation and an electronic grazing time method and to evaluate the effects of nutritional plans on intake, grazing behavior and horizontal and vertical locomotion of young bulls in a tropical pasture. Thirty-nine Nellore young bulls with an average body weight of $345{\pm}9.3$ kg kept in pasture were used. The experimental treatments consisted of: restricted: animals kept in a plot with a low mass of forage receiving mineral mixture only; control: animals receiving mineral mixture only; HPHC: a high protein and high carbohydrate supplement; HPLC: a high protein and low carbohydrate supplement; LPHC: a low protein and high carbohydrate supplement; LPLC: a low protein and low carbohydrate supplement. GPS collars equipped with activity sensors were used. Information about head position, latitude, longitude and altitude were recorded. Daytime grazing behavioral patterns monitored by a continuous focal animal recording method was compared to behavior estimated by the activity sensor. Feed intake was estimated by a marker method. The Restricted group presented lower (p<0.05) intake of dry matter and TDN. However, difference in dry matter intake was not found (p>0.05) between non-supplemented and supplemented animals. Difference was not found (p>0.05) in daytime grazing time obtained by visual observation or the activity sensor method. The restricted group showed longer (p<0.05) grazing time (9.58 h/d) than other groups, but difference was not found (p>0.05) in the grazing time between Control (8.35 h/d) and supplemented animals (8.03 h/d). The Restricted group presented lower (p<0.05) horizontal locomotion distance (2,168 m/d) in comparison to other groups (2,580.6 m/d). It can be concluded that the use of activity sensor methods can be recommended due to their being similar to visual observation and able to record 24-h/d. While supplements with high carbohydrates reduce pasture intake, they do not change grazing behavior. Moderate supplementation (until 50% of protein requirement and 30% of energy requirement) of beef cattle on tropical pasture has no effect on daily locomotion.

Mobility Improvement of a Jumping Robot using Conical Spring with Variable Length Endtip (가변길이 엔드팁을 갖는 원추형 스프링을 이용한 도약로봇의 이동성 향상)

  • Kim, Ki-Seok;Kim, Byeong-Sang;Song, Jae-Bok;Yim, Chung-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1108-1114
    • /
    • 2009
  • Mobility is one of the most important features for a guard robot since it should be operated in rough places. A wheel-based mobile robot capable of jumping is an appropriate structure for a guard robot because it can easily satisfy the requirements for small guard robots. The jumping robot can reach a higher place more rapidly than other locomotion methods. This research proposes a small robot equipped with the jumping mechanism based on the conical spring with the variable length endtip. The variable length endtip enables the independent control of the jump force and jump angle which are related to the jump height and jump distance, respectively. Various experiments demonstrated that the proposed jumping mechanism can provide the independent control of jump force and jump angle, and improve the mobility of a small robot to overcome an obstacle. Furthermore, a combination of the jumping mechanism and the PSD sensor to measure the distance to the step enable the jumping robot to autonomously climb stairs.

Locomotive Characteristic Analysis of Terrestrial Vertebrates for the Modeling of Four-Legged Walking Machine

  • Park, S.H.;Jeong, G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.743-747
    • /
    • 2000
  • The coordinated mechanism of terrestrial vertebrates enables them to maneuver over all of the terrain conditions since they have a distinct ability to adapt to varying conditions. Their locomotions remain infinitely more advanced and elegant than that of present-day existing mechanical walking robots. However, the principles of existing walking robots are based more on technical rather than on biological concepts, yielding unstable locomotion with low speed. In order to apply these advanced biological phenomena to the mechanical design of 4-legged walking robot, modeling methods are introduced and mathematical equations are also introduced.

  • PDF

A Study on the Wall Following Method of the Motorized Wheelchair (전동휠체어의 벽면추종 기법에 관한 연구)

  • 최인구;이응혁
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.209-216
    • /
    • 1994
  • The objective of the research reported in this paper is to design locomotion system of the motorized wheelchair, to develope the wall following algorithm. The indoor navigation of a motorized wheelchair can be based on the wall following techniques. In this paper, it is proposed to enhance stability and efficiency using the 3 ultrasonic sensors arranged at a same perpendicular pivot. Using this method, the angle between the motorized wheelchair and the wall is detected and the range of control commands has been increased. For the better stability, the calculated slope of a wall using LSLF algorithm was fed back to the control part. By adapting the suggested algorithm and method, the motorized wheelchair could follow a wall in 4 seconds, for a change of distance between the wheelchair and wall from 30 to 100cm.

  • PDF

A Study on the Construction of Locomotion Map of Motorized Wheelchair using a Camera Calibration (카메라 교정에 의한 전동휠체어의 위치 주행지도 구성에 관한 연구)

  • Shin, D.S.;Moon, C.H.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.95-98
    • /
    • 1996
  • In this paper, The vehicle's path construction method for motorized wheelchair's autonomous navigation in a building through analysis of a corridor image using vision system has been proposed and We detected lines of vertical axis through camera distortion parameter, which was measured by camera calibration in a corridor image. Then we got the feature points in the lines. We analyzed the distance of feature points and what is feature points. we reconstructed corridor image to vehicle's path.

  • PDF

The Design of Controller for Unlimited Track Mobile Robot

  • Park, Han-Soo;Heon Jeong;Park, Sei-Seung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.41.6-41
    • /
    • 2001
  • As autonomous mobile robot become more widely used in industry, the importance of navigation system is rising, But eh primary method of locomotion is with wheels, which cause man problems in controlling tracked mobile robots. In this paper, we discuss the used navigation control of tracked mobile robots with multiple sensors. The multiple sensors are composed of ultrasonic wave sensors and vision sensors. Vision sensors gauge distance using a laser and create visual images, to estimate robot position. The 80196 is used at close range and the vision board is used at long range. Data is managed in the main PC and management is distributed to ever sensor. The controller employs fuzzy logic.

  • PDF