• Title/Summary/Keyword: LOAD CELL

Search Result 1,188, Processing Time 0.03 seconds

Improvement of Uncertainty for Gravimetric Flow Calibrator (10톤 용량의 중량식 교정장치에 대한 불확도 개선)

  • Lee, Dong-Keun;Park, Joo-Young;Lee, Haeng-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1042-1046
    • /
    • 2008
  • Both the weighing bridge and the diverter system is a important component in achieving a high accuracy liquid flow rate standard using a static gravimetric method. The weighing bridge is a tank which weighing collected flow with a load cells. The diverter is a moving device used to direct flow alternately along its normal course(by pass) or towards the weighing tank. The time needed for collection into the weighing tank is measured using a timer. So it is important to the diversion period is sufficiently fast and triggering point of timer which is determined the filling time. On this studies show that the measurement deviation of load cell and uncertainty of diverter system for changing diversion speed and triggering point was estimated in accordance with Guide to The Expression of Uncertainty in Measurement(ISO).

  • PDF

A Photovoltaic Power Management System using a Luminance-Controlled Oscillator for USN Applications

  • Jeong, Ji-Eun;Bae, Jun-Han;Lee, Jinwoong;Lee, Caroline Sunyong;Chun, Jung-Hoon;Kwon, Kee-Won
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.48-57
    • /
    • 2013
  • This paper presents a power management system of the dye-sensitized solar cell (DSSC) for ubiquitous sensor network (USN) applications. The charge pump with a luminance-controlled oscillator regulates the load impedance of the DSSC to track the maximum power point (MPP) under various light intensities. The low drop-out regulator with a hysteresis comparator supplies intermittent power pulses that are wide enough for USN to communicate with a host transponder even under dim light conditions. With MPP tracking, approximately 50% more power is harvested over a wide range of light intensity. The power management system fabricated using $0.13{\mu}m$ CMOS technology works with DSSC to provide power pulses of $36{\mu}A$. The duration of pulses is almost constant around $80{\mu}s$ (6.5 nJ/pulse), while the pulse spacing is inversely proportional to the light intensity.

Design of 1-Kb eFuse OTP Memory IP with Reliability Considered

  • Kim, Jeong-Ho;Kim, Du-Hwi;Jin, Liyan;Ha, Pan-Bong;Kim, Young-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.2
    • /
    • pp.88-94
    • /
    • 2011
  • In this paper, we design a 1-kb OTP (Onetime programmable) memory IP in consideration of BCD process based EM (Electro-migration) and resistance variations of eFuse. We propose a method of precharging BL to VSS before activation of RWL (Read word-line) and an optimized design of read NMOS transistor to reduce read current through a non-programmed cell. Also, we propose a sensing margin test circuit with a variable pull-up load out of consideration for resistance variations of programmed eFuse. Peak current through the non-programmed eFuse is reduced from 728 ${\mu}A$ to 61 ${\mu}A$ when a simulation is done in the read mode. Furthermore, BL (Bit-line) sensing is possible even if sensed resistance of eFuse has fallen by about 9 $k{\Omega}$ in a wafer read test through a variable pull-up load resistance of BL S/A (Sense amplifier).

Improvement of Electrochemical Characteristics and Study of Deterioration of Aluminum Foil in Organic Electrolytes for EDLC

  • Lee, Mun-Soo;Kim, Donna H.;Kim, Seung-Cheon
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.9-19
    • /
    • 2018
  • The anodic behavior of aluminum (Al) foils with varying purity, capacitance, and withstand voltage in organic electrolytes was examined for EDLC. The results of cyclic voltammetry (CV) and chronoamperometry (CA) experiments showed that the electrochemical stability improves when Al foil has higher purity, lower capacitance, and higher withstand voltage. To improve the electrochemical stability of EDLC current collectors made of low-purity foil (99.4% Al foil), the foil was modified by chemical etching to reduce its capacitance to $60{\mu}F/cm^2$ and forming to have withstand a voltage of 3 Vf. EDLC cells using the modified Al foil as a current collector were made to 2.7 V with 360 F, and a constant voltage load test was subsequently performed for 2500 hours at high temperature under a rated voltage of 2.7 V. The reliability and stability of the EDLC cell improved when the modified Al foil was used as a current collector. To understand the deterioration process of the Al current collector, standard cells made of conventional Al foil under a constant voltage load test were disassembled, and the surface changes of the foil were measured every 500 hours. The Al foil became increasingly corroded, causing the adhesion between the AC coating layer and the Al foil to weaken, and it was confirmed that partial AC coating layer peeling occurred.

The Advanced Voltage Regulation Method for ULTC in Distribution Systems with DG

  • Kim, Mi-Young;Song, Yong-Un;Kim, Kyung-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.737-743
    • /
    • 2013
  • The small-scaled onsite generators such as photovoltaic power, wind power, biomass and fuel cell belong to decarbonization techniques. In general, these generators tend to be connected to utility systems, and they are called distributed generations (DGs) compared with conventional centralized power plants. However, DGs may impact on stabilization of utility systems, which gets utility into trouble. In order to reduce utility's burdens (e.g., investment for facilities reinforcement) and accelerate DG introduction, the advanced operation algorithms under the existing utility systems are urgently needed. This paper presents the advanced voltage regulation method in power systems since the sending voltage of voltage regulators has been played a decisive role restricting maximum installable DG capacity (MaxC_DG). For the proposed voltage regulation method, the difference from existing voltage regulation method is explained and the detailed concept is introduced in this paper. MaxC_DG estimation through case studies based on Korean model network verifies the superiority of the proposed method.

Structural evaluation of a foldable cable-strut structure for kinematic roofs

  • Cai, Jianguo;Zhang, Qian;Zhang, Yiqun;Lee, Daniel Sang-hoon;Feng, Jian
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.669-680
    • /
    • 2018
  • The rapidly decreasing natural resources and the global variation of the climate push us to find intelligent and efficient structural systems to provide more people with fewer resources. This paper proposed a kinematic cable-strut system to realize sustainable structures in responding to changing environmental conditions. At first, the concept of the kinematic system based on crystal-cell pyramid (CP) cable-strut unit was given. Then the deployment of the structure was studied experimentally. After that, the static behaviors in the fully deployed state under the symmetric and asymmetric load cases were investigated. Moreover, the effects of thermal loading and the initial prestress distribution were also discussed. Comparative studies between the proposed structure and other deployable cable-strut system under three times of design load cases were carried out. Finally, the robustness of the system was studied by removal of one passive cable at one time.

Development of Tire Test Bed for Dynamic Behavior Analysis of Vehicles on Off-roads (비포장노면 차량 거동 분석을 위한 타이어 테스트베드 개발)

  • Lee, Dae-Kyung;Sohn, Jeong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.29-35
    • /
    • 2022
  • When a vehicle is driven off a road surface, the deformations of the road surface and tire are combined. Consequently, the dynamic behavior of wheel movement becomes difficult to predict and control. Herein, we propose a tire test bed to capture the dynamic behavior of tires moving on sand and soil. Based on this study, it is discovered that the slip rate can be controlled, and the vertical force can be measured using a load cell. The test results show that this test bed can be useful for capturing the dynamic behavior of the tire and validating dynamic simulations. In fact, the tire test bed developed in this study can be used to verify the results of computer simulations. In addition, it can be used for basic experiments pertaining to the speed control of unmanned autonomous vehicles.

Performance Analysis of Input-Output Buffering ATM Switch with Output-port Expansion Mechanism (출력포트 확장 방식을 사용한 입출력 버퍼형 ATM 교환기에서의 성능 비교 분석)

  • Kwon, Se-Dong;Park, Hyun-Min
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.531-542
    • /
    • 2002
  • An input and output buffering ATM switch conventionally operates in either Queueloss mode or Backpressure mode. Recently, a new mode, which is called Hybrid mode, was proposed to overcome the drawbacks of Queueloss mode and Backpressure mode. In Hybrid mode, when both the destined output buffer and the originfted input buffer are full, a cell is dropped. This thesis analyzes the cell loss rate and the cell delay of Queueloss, Backpressure and Hybrid modes in a switch adopting output-port expansion scheme under uniform traffic. Output-port expansion scheme allows only one cell from an input buffer to be switched during one time slot. If several cells switch to a same destined output port, the number of maximum transfer cells is restricted to K (Output-port expansion ratio). The simulation results show that if an offered load is less than 0.9, Hybrid mode has lower cell loss rate than the other modes; otherwise, Queueloss mode illustrates the lowest cell loss rate, which is a different result from previous researches. However, the difference between Hybrid and Queueloss modes is comparably small. As expected, the average cell delay in Backpressure mode is lower than those of Queueloss mode and Hybrid mode, since the cell delay due to the retransmission of higher number of dropped cells in Backpressure mode is not considered.

FUN14 Domain-Containing Protein 1 Is Involved in Amyloid Beta Peptide-Induced Mitochondrial Dysfunction and Cell Injury in HT-22 Neuronal Cells (HT-22 신경세포에서 아밀로이드 베타 펩티드에 의한 미토콘드리아와 세포 손상 기전에서 FUN14 도메인 함유 단백 1의 역할)

  • Jae Hoon Kang;Jae Suk Woo
    • Journal of Life Science
    • /
    • v.34 no.1
    • /
    • pp.37-47
    • /
    • 2024
  • FUN14 domain-containing protein 1 (FUNDC1), an outer mitochondrial membrane protein, contributes to removal of damaged mitochondria through mitophagy. In this study, to elucidate the role of the FUNDC1 in the amyloid beta peptide (Aβ)-induced neuropathy, changes in the degree of mitochondrial dysfunction and cell injury caused by Aβ treatment were examined in the HT-22 neuronal cells in which the FUNDC1 expression was transiently silenced or overexpressed. We found that Aβ treatment causes a time-dependent decrease of the FUNDC1 expression. In the Aβ-treated cells, there were a drop in MTT reduction ability, depletion of cellular ATP, disruption of mitochondrial membrane potential, stimulation of cellular ROS production, and increased mitochondrial Ca2+ load. Activation of caspase-3 and induction of apoptotic cell death were also observed. Transient silencing of the FUNDC1 expression by transfection with the FUNDC1 small interfering RNA per se caused mitochondrial dysfunction and apoptotic cell death like the effect of Aβ treatment. Conversely, in cells in which the FUNDC1 was transiently overexpressed by FUNDC1-Myc transfection, overexpression itself had no effect on the mitochondrial functional integrity and cell survival but showed a significant prevention effect against mitochondrial and cell injury caused by Aβ treatment. Overall, these results suggest that the FUNDC1 is importantly involved in the Aβ-induced mitochondrial dysfunction and cell injury in the HT-22 neuronal cells.