• Title/Summary/Keyword: LOAD CELL

Search Result 1,188, Processing Time 0.024 seconds

A Novel Single Phase Soft Switched PFC Converter

  • Altintas, Nihan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1592-1601
    • /
    • 2014
  • In this study, a novel single phase soft switched power factor correction (PFC) converter is developed with active snubber cell. The active snubber cell provides boost switch both to turn on with zero voltage transition (ZVT) and to turn off with zero current transition (ZCT). As the switching losses in the proposed converter are too low, L and C size can be reduced by increasing the operating frequency. Also, all the semiconductor devices operate with soft switching. There is no additional voltage stress in the boost switch and diode. The proposed converter has a simple structure, low cost and ease of control as well. It has a simple control loop to achieve near unity power factor with the aid of the UC3854. In this study, detailed steady state analysis of the proposed converter is presented and this theoretical analysis is verified by a prototype of 100 kHz and 500 W converter. The measured power factor and efficiency are 0.99 and 97.9% at full load.

Optimal Operation Method of Microgrid System Using DS Algorithm (DS 알고리즘을 이용한 마이크로 그리드 최적운영기법)

  • Park, Si-Na;Rhee, Sang-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.34-40
    • /
    • 2015
  • This paper presents an application of Differential Search (DS) meta-heuristic optimization algorithm for optimal operation of micro grid system. DS algorithm has the benefit of high convergence rate and precision compared to other optimization methods. The micro grid system consists of a wind turbine, a diesel generator, and a fuel cell. The simulation is applied to micro grid system only. The wind turbine generator is modeled by considering the characteristics of variable output. One day load data which is divided every 20 minute and wind resource for wind turbine generator are used for the study. The method using the proposed DS algorithm is easy to implement, and the results of the convergence performance are better than other optimization algorithms.

Operational Characteristic Analysis of DC Micro-grid with Detail Model of Distributed Generation (분산전원 상세모델을 적용한 DC Micro-grid의 동작특성 분석)

  • Lee, Ji-Heon;Kwon, Gi-Hyun;Han, Byung-Moon;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2175-2184
    • /
    • 2009
  • This paper describes operational analysis results of the DC micro-grid using detailed model of distributed generation. Detailed model of wind power generation, photo-voltaic generation, fuel-cell generation was implemented with the user-defined model of PSCAD/EMTDC software that is coded with C-language. The operation analysis was carried out using PSCAD/EMTDC software, in which the power circuit is implemented by built-in model and the controller is modelled by user-defined model that is also coded with C-language. Various simulation results confirm that the DC micro-grid can operate without any problem in both the interconnected mode and the islanded mode. The operation analysis result confirms that the DC micro-grid make it feasible to provide power to the load stably. And it can be utilize to develop the actual system design and building.

Further validation of the hybrid particle-mesh method for vortex shedding flow simulations

  • Lee, Seung-Jae;Lee, Jun-Hyeok;Suh, Jung-Chun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.1034-1043
    • /
    • 2015
  • This is the continuation of a numerical study on vortex shedding from a blunt trailing-edge of a hydrofoil. In our previous work (Lee et al., 2015), numerical schemes for efficient computations were successfully implemented; i.e. multiple domains, the approximation of domain boundary conditions using cubic spline functions, and particle-based domain decomposition for better load balancing. In this study, numerical results through a hybrid particle-mesh method which adopts the Vortex-In-Cell (VIC) method and the Brinkman penalization model are further rigorously validated through comparison to experimental data at the Reynolds number of $2{\times}10^6$. The effects of changes in numerical parameters are also explored herein. We find that the present numerical method enables us to reasonably simulate vortex shedding phenomenon, as well as turbulent wakes of a hydrofoil.

Development of Independent 1 kW-class PEMFC-Battery Hybrid System for a Building (건물용 독립형 1kW급 PEMFC-배터리 하이브리드 시스템 기술 개발)

  • Yang, Seug Ran;Kim, Jung Suk;Choi, Mi Hwa
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.113-120
    • /
    • 2019
  • We have developed 1 kW-class PEMFC-battery hybrid system independently powering to the building, through the process of system design, current load characteristics analysis, power system configuration for demonstration site and performance evaluation. In order to use the fuel cell and battery as the hybrid type, a control technology for the charging/discharging decision and charging speed of the battery is required rather than using fuel cell. Also output power distribution between PEMFC and the battery is a core of energy management technology. It is confirmed that it is possible to supply independently 1kW powering the building to ensure optimal energy management through the power control experiment of the hybrid system.

Biomedical Application of Silk Sericin: Recent Research Trend

  • Seong-Gon Kim;Je-Yong Choi;HaeYong Kweon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Silk sericin, a natural protein from silkworm cocoons, is emerging as a multifunctional biomaterial in biomedicine, particularly in tissue engineering and wound healing. Recent studies have highlighted its biocompatibility, biodegradability, and potential for chemical modification, which allows it to be incorporated into various scaffold architectures. This review article synthesizes current research, including the development of sericin-based hydrogel scaffolds for tissue engineering and sericin's role in enhancing wound healing. Key findings demonstrate sericin's ability to refine scaffold porosity and mechanical strength, expedite tissue healing, and reduce bacterial load in wounds. The integration of sericin into novel bioactive dressings and its use in peripheral nerve injury repair are also discussed, showcasing its adaptability and efficacy. The convergence of these studies illustrates the broad applications of sericin, from scaffold design to clinical interventions, making it a promising material in regenerative medicine and tissue engineering, with the potential to improve patient outcomes significantly.

From Renewable Electricity to Green Hydrogen: Production and Storage Challenges for a Clean Energy Future

  • Hidouri Dalila;Rym Marouani;Cherif Adnen
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.171-179
    • /
    • 2024
  • Decentralized energy production without greenhouse gas emissions from renewable energy sources despite their advantage and environmental impact suffers from the problem of intermittent and fluctuating supply depending on weather conditions. To overcome this problem, energy storage is essential to enable reliable and continuous supply of the load. Hydrogen is one of the most promising energy storage solutions because it is easily transportable and can be used as fuel or as a raw material for the production of other chemicals.In this article, we will focus on hydrogen energy storage techniques using photovoltaic systems. We will review the different types of hydrogen storage structuresfor several applications, including residential and commercial buildings, as well as industry and transportation (electric vehicles using PEFMC fuel cells).

The Cell Resequencing Buffer for the Cell Sequence Integrity Guarantee for the Cyclic Banyan Network (사이클릭 벤얀 망의 셀 순서 무결성 보장을 위한 셀 재배열 버퍼)

  • 박재현
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.9
    • /
    • pp.73-80
    • /
    • 2004
  • In this paper, we present the cell resequencing buffer to solve the cell sequence integrity problem of the Cyclic banyan network that is a high-performance fault-tolerant cell switch. By offering multiple paths between input ports and output ports, using the deflection self-routing, the Cyclic banyan switch offer high reliability, and it also solves congestion problem for the internal links of the switch. By the way, these multiple paths can be different lengths for each other. Therefore, the cells departing from an identical source port and arriving at an identical destination port can reach to the output port as the order that is different from the order arriving at input port. The proposed cell resequencing buffer is a hardware sliding window mechanism. to solve such cell sequence integrity problem. To calculate the size of sliding window that cause the prime cost of the presented device, we analyzed the distribution of the cell delay through the simulation analyses under traffic load that have a nonuniform address distribution that express tile Property of traffic of the Internet. Through these analyses, we found out that we can make a cell resequencing buffer by which the cell sequence integrity is to be secured, by using a, few of ordinary memory and control logic. The cell resequencing buffer presented in this paper can be used for other multiple paths switching networks.

A study on modeling and measuring method of tire weight imbalances and improving reliability (ICCAS 2004)

  • Lee, Ki-Seong;Jeong, Tae-Woon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1685-1688
    • /
    • 2004
  • I propose a modeling of a mechanism for weight fire uniformity measurement of a tire and a way I interpret a Sampling signal by Loadcell through an analysis, and to measure fire uniformity in this study. Correct a weight fire uniformity measurement was possible through the production of conversion and influence factor of a signal with a basis with the model who was an oscillation mechanics enemy.

  • PDF

An Approximation Method for the Performance Evaluation of AGV Systems (자동 유도 운반차량 시스템의 성능평가를 위한 근사적 방법)

  • Lee, Hyo-Seong;Cho, Myeon-Sig
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.16 no.2
    • /
    • pp.23-36
    • /
    • 1990
  • A unit-load automated guided vehicle system is considered in which a single vehicle is operated on a unidirectional path in a closed loop. The vehicle serves a manufacturing cell moving pallets from one station to another based on the "First-Encountered-First-Serve" dispatching rule. An approximation method is developed to compute the mean waiting time of an arbitrary pallet at each station. Extensive numerical experiments, performed for various problems, yield fairly good results in most of the cases compared with those obtained by simulation method.

  • PDF