• Title/Summary/Keyword: LNG vehicle

Search Result 35, Processing Time 0.017 seconds

Characteristics of Electronically Controlled 13L LNG-Diesel Dual Fuel Engine (13L급 LNG-디젤 혼소엔진의 기초 성능 특성 연구)

  • Lee, Seok-Hwan;Lee, Jin-Wook;Heo, Seong-Joon;Yoon, Sung-Shik;Roh, Yun-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.54-58
    • /
    • 2007
  • The trailers with electronically controlled diesel engine was converted to dual fuel engine system. To estimate economical efficiency, test vehicles have been operated on a certain driving route repeatedly. Fuel economy, mximum driving distance per refueling and driveability are examined on the road including a free way. Developed vehicle can be operated over 500 km with dual Hel and shows 85% of diesel substitution ratio. Driveability is similar with but passing acceleration. It will be improved by calibration process. Test engine was set up for investigating power output, thermal efficiency and emission. ND 13-mode tests were performed for the test cycle. The emission result of dual fuel meets K2006 regulation and the engine performance of dual fuel engine was equivalent to the performance of diesel engine.

  • PDF

A Study on Fuel Selection for Next-Generation Launch Vehicles (차세대 발사체용 연료선정에 관한 연구)

  • Kim, Cheulwoong;Lim, Byoungjik;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.62-80
    • /
    • 2021
  • The requirements for the next-generation propulsion system and for a good propellant have been summarized. The characteristics and effectiveness of kerosene, hydrogen, and methane, which are the fuels that are mainly attracting attention in Korea and abroad, were compared with each other. As a result of the comparison, methane was evaluated to be more advantageous than other fuels in reliability, cost, reusability, maintenance, eco-friendliness, safety, lifespan, technical difficulties, engine cycle selection, application of common bulkhead, and non-disassembly/reassembly delivery. And in terms of performance, the specific impulse of methane is higher than that of kerosene, so the efficiency of the launch vehicle can be increased. Methane's properties incluidng eco-friendliness, low-temperature combustion, long life, and maintenability make it beneficial for reuse and for the development of multi-purpose engines.

Development of Performance Based Resistance Capacity Evaluation Method for RC Compression Member under Vehicle Impact Load (차량 충돌하중을 받는 RC 압축부재의 성능기반형 저항성능 평가방법 개발)

  • Kim, Jang-Ho Jay;Yi, Na-Hyun;Phan, Duc-Hung;Kim, Sung-Bae;Lee, Kang-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.535-546
    • /
    • 2010
  • Recently, the probability of collision accident between vehicles or vessels and infrastructures are increasing at alarming rate. Particularly, collision impact load can be detrimental to sub-structures such as piers and columns. The damaged pier from an impact load of a vehicle or a vessel can lead to member damages, which make the member more vulnerable to impact load due to other accidents which. In extreme case, may cause structural collapse. Therefore, in this study, the vehicle impact load on concrete compression member was considered to assess the quantitative design resistance capacity to improve, the existing design method and to setup the new damage assessment method. The case study was carried out using the LS-DYNA, an explicit finite element analysis program. The parameters for the case study were cross-section variation of pier, impact load angle, permanent axial load and axial load ratio, concrete strength, longitudinal and lateral rebar ratios, and slenderness ratio. Using the analysis results, the performance based resistance capacity evaluation method for impact load using satisfaction curve was developed using Bayesian probabilistic method, which can be applied to reinforced concrete column design for impact loads.

A Study on the Development of Bio-gas Engine Using Livestock Manure - Fundamental Design and Experimental Analysis on the Performance - (축분을 이용한 바이오가스 엔진 개발 - 기초설계 및 성능분석 -)

  • Paek Y.;Kim Y. J.;Kang G. C.;Ryou Y. S.;Cho K. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.354-359
    • /
    • 2005
  • This is a fundamental study to develop a bio-gas utilization technology using livestock manure. Especially, this study was carried out to develop an engine using bio-gas. A bio-gas engine was designed and manufactured by modification of a diesel engine of 3 cylinders powering 13.31 kW/2800 rpm, changing the fuel supplying system fit for bio-gas. The result showed that, when the Air/Fuel ratio was controlled with fixed spark timing, the power of biogas-fueled engine is about $10.6{\~}14.6\%$ lower then that of LNG-fueled engine because of low volumetric efficiency. The engine output and torque was $11.85{\~}13.3$ kW, $39.5{\~}40.8\;N{\cdot}m$, respectively at the engine speed of 2600 rpm. Bio-gas consumption rate was 260.20 g/kW/hr, 315.20 g/kW/hr in engine speed or 1000 rpm, 2800 rpm, respectively.

Conceptual study of the Vitiated Air Heater for Scramjet test (스크램젯용 공기 가열기 개념연구)

  • Lee, Jung-Min;Kang, Kyung-Taik;Lim, Jin-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.349-352
    • /
    • 2010
  • This is conceptual study of vitiated air heater(VAH), the necessary ground test facility, for characteristics studies of scramjet combustion and development of scramjet engines. The VAH is one of various types which provided hot air to an intake or a combustion chamber of scramjet and it must use suitable fuel to get hot combustion gas and more similar mixture gas(vitiated air) to real air. In the study, foreign VAHs being capable of providing very high temperature were researched, and injectors for VAH using LNG(CH4) or hydrogen were designed conceptually to develop scramjet vehicle.

  • PDF