• Title/Summary/Keyword: LNG supply system

Search Result 69, Processing Time 0.025 seconds

Hybrid Energy Storage System with Emergency Power Function of Standardization Technology (비상전원 기능을 갖는 하이브리드 에너지저장시스템 표준화 기술)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.187-192
    • /
    • 2019
  • Hybrid power storage system with emergency power function for demand management and power outage minimizes the investment cost in the building of buildings and factories requiring emergency power generation facilities, We propose a new business model by developing technology that can secure economical efficiency by reducing power cost at all times. Normally, system power is supplied to load through STS (Static Transfer Switch), and PCS is connected to system in parallel to perform demand management. In order to efficiently operate the electric power through demand forecasting, the EMS issues a charge / discharge command to the ESS as a PMS (Power Management System), and the PMS transmits the command to the PCS controller to operate the system. During the power outage, the STS is rapidly disengaged from the system, and the PCS becomes an independent power supply and can supply constant voltage / constant frequency power to the load side. Therefore, it is possible to secure reliability through verification of actual system linkage and independent operation performance of hybrid ESS, By enabling low-carbon green growth technology to operate in conjunction with an efficient grid, it is possible to improve irregular power quality and contribute to peak load by generating renewable energy through ESS linkage. In addition, the ESS is replacing the frequency follow-up reserve, which is currently under the charge of coal-fired power generation, and thus it is anticipated that the operation cost of the LNG generator with high fuel cost can be reduced.

A Study on the Reliability Analysis and Risk Assessment of Liquefied Natural Gas Supply Utilities (천연가스 공급설비에 대한 기기신뢰도 분석 및 위험성 평가)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-20
    • /
    • 2003
  • Natural gas has been supplied through underground pipelines and valve stations as a new city gas in Seoul. In contrast to its handiness the natural gas has very substantial hazards due to fires and explosions occurring from careless treatments or malfunctions of the transporting system. The main objectives of this study are to identify major hazards and to perform risk assessments after assessing reliabilities of the composing units in dealing with typical pipeline networks. there-fore two method, fault tree analysis ;1nd event tree analysis, are used here. Random valve stations are selected and considered its situation in location. The value of small leakage, large rupture, and no supply of liquefied natural gas is estimated as that of top event. By this calculation the values of small leakage are 3.29 in I)C valve station, 1.41 in DS valve station, those of large rup-lure are $1.90Times10_{-2}$ in DC valve station, $2.32$\times$10^{-2}$ in DS valve station, and those of no supply of LNG to civil gas company are $2.33$\times$10 ^{-2}$ , $2.89$\times$10^{-2}$ in each valve station. And through minimal cut set we can find the parts that is important and should be more important in overall system. In DC valve station one line must be added between basic event 26,27 because the potential hazard of these parts is the highest value. If it is added the failure rate of no supply of LNG is reduced to one fourth. In DS valve station the failure rate of basic event 4 is 92eye of no supply of LNG. Therefore if the portion of this part is reduced (one line added) the total failure rate can be decreased to one tenth. This analytical study on the risk assessment is very useful to prepare emergency actions or procedures in case of gas accidents around underground pipeline networks and to establish a resolute gas safety management system for loss prevention in Seoul metropolitan area.

On the Application of CFD Codes for Natural Gas Dispersion and Explosion in Gas Fuelled Ship

  • Kim, Ki-Pyoung;Kang, Ho-Keun;Choung, Choung-Ho;Park, Jae-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.946-956
    • /
    • 2011
  • The main objectives of this study are to analyze the leaked gas dispersion and quantify the potential overpressures due to vapor cloud explosions in order to identify the most significant contributors to risk by using Computational Fluid Dynamics (CFX & FLACS) for gas fuelled ships. A series of CFD simulations and analyses have been performed for the various gas release scenarios in a closed module, covering different release rates and ventilating methods. This study is specially focused on the LNG FGS (Fuel Gas Supply) system recently developed for the propulsion of VLCC crude oil carriers by shipyards. Most of work presented is discussed on the gas dispersion from leaks in the FGS room, and shows some blast prediction validation examples.

A Study on the Structural Analysis of Cryogenic Submerged Pump (극저온용 액중펌프 구조해석에 관한 연구)

  • Chin, Do-Hun;Yi, Chung-Seob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.727-733
    • /
    • 2020
  • Recently, reciprocating cryogenic pumps are mainly developed for small-and-mid sized fuel supply systems. Centrifugal type pumps are not actively developed. Most cryogenic submerged pumps are imported. For transportation, cryogenic liquefied natural gas requires the liquid pump technology that can works in extreme evironments. In order to transport liquefied natural gas, it is necessary to apply pump technology. This is the fundamental research for developing the submerged pump technology applicable to the transportation and storage system equipment of cryogenic liquefied system. It tries to secure basic design materials through reverse-engineering in the cryogenic submerged pump development. Regarding materials, STS-304 and STS-431 which are stainless materials widely used in the cryogenic area are applied. Aluminum alloy is applied to impeller and upper manifolder and the pump rotates at the high speed of 6,000rpm.

Analysis of Price Formation Mechanism of Natural Gas in the Global Market and Business Model of ''Cheniere Energy" (Анализ механизмов формирования цен на газ на мировом рынке и бизнес-модели «Сheniere Energy»)

  • Sung, Jinsok
    • Analyses & Alternatives
    • /
    • v.5 no.2
    • /
    • pp.77-105
    • /
    • 2021
  • Natural gas consumption in Asia is growing at fast tempo because of various factors such as economic growth in the region, urbanization, coal-to-gas switch at power and industry sector. Due to geographical characteristics and lack of international pipeline connections between countries in the continent, majority of natural gas exported to Asian consumers is transported by tankers on the sea in the form of liquefied natural gas. As Asian market is the most lucrative market with the fastest demand growth, the competitions between LNG sellers for market share in Asian market are strengthening. The competitions accelerated, especially after the introduction of large volume of incremental supply into the market by new exporters from the U.S., Australia, and Russia. Cheniere Energy, the first exporter of liquefied natural gas (LNG) in the lower 48 states of U.S. has not adopted the traditional price formation mechanism and business model. Traditionally, prices of long-term LNG contracts have been indexed to the price of competing fuels, such as crude oil. The company adopted a pricing mechanism and business model based on a cost-plus system. Cheniere Energy opted for the safer and the risk-free pricing system, that annually guarantees a fixed amount of revenue to the seller. The company earns the same amount of money, regardless of natural gas price dynamics in the domestic and international market, but possibly with less revenue. However, by introducing and successfully implementing the safer and risk- free business model, Cheniere Energy, a company of a relatively smaller size in comparison with major oil and gas companies, became an example to other smaller-sized companies in the U.S. The company's business model demonstrated how to enter and operate LNG business amid increasing competitions among sellers in the U.S. and international market.

A Study on the Exhaust Emission of LPG and Gasoline Vehicle (LPG와 가솔린 연료의 차량 배출가스 특성에 대한 비교 연구)

  • 정성환;한상명
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.23-28
    • /
    • 2002
  • As the interest on the air pollution is gradually rising up at home and abroad, automotive industries have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative aftertreatment systems, and using clean fuels. Methanol, ethanol, LNG, LPG, H2, reformulated gasoline are generally recognized as the clean fuel. Since the low price policy of government on LPG has expanded its vehicle market recently, there is concern of the exhaust emission of LPG vehicle. In this paper, we studied the value of LPG fuel as a clean fuel by comparing the results of the exhaust emission from LPG and Gasoline fueled vehicles, and discussed its limitation of LPG vehicle with mixer type as a fuel supply system. FTIR was used to understand the difference of exhaust emission components of LPG and Gasoline fueled vehicles.

Development of Combustion Test Facility for Liquid Locket Engine (액체로켓엔진 성능 및 냉각특성 연구를 위한 연소시험 장치 개발)

  • Lee Sung-Woong;Kim Dong-Hwan;Kim Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.189-192
    • /
    • 2004
  • Test Facility for hot firing test of small size liquid rocket engine has been developed to research the cooing characteristics of kerosene for cylinder part especially. Propellants for the tests are kerosene and liquid oxygen as fuel and oxidizer respectively and they are fed by gaseous nitrogen. The engine components used hot firing test except for cylinder are cooled by tap-water. Valves for supply of propellants and coolants are controlled by pneumatically. System control and data recording are conducted automatically.

  • PDF

Analysis on Product Architecture and Organizational Capability of Shipbuilding Industry in South Korea and China (한·중 조선 산업의 제품 아키텍처와 조직역량에 관한 연구)

  • Baek, Seoin;Lee, Seongmin;Lee, Dukhee
    • Journal of Technology Innovation
    • /
    • v.26 no.2
    • /
    • pp.69-93
    • /
    • 2018
  • As companies seek lower cost and superior quality at the same time, which depend on improvement in product architecture, they need to critically consider product architecture as part of corporate strategy. This research investigated how product architecture and organizational capability affect innovative outcomes with using architecture framework. As a result, we were able to find out Korean shipbuilding company has put much effort on integral works such as development of FGSS(Fuel gas supply system), PRS(Partial Re-liquefaction System) and weight lightening for improving fuel efficiency. And this kind of integral ability was realized by organizational capability of Korean shipbuilding company based on interactive relationship with plant workers. In contrast, Chinese shipbuilding companies focused excessively on the standard design and the convenience of research and development made by central government, overlooking the need for fine-tuning. As a result, the fuel efficiency of Chinese LNG ships turned out to be 7-10% lower than those of South Korea with using the same modules and components.

The Application of Systemic Analysis on Complex and Multi-layered Shipbuilding yard in Korea (다계층·복합구조의 국내 조선소를 대상으로 한 시스템분석기법 적용 방안 연구)

  • Bae, Gye wan;Kim, Kyunghwan
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.4
    • /
    • pp.88-98
    • /
    • 2021
  • Korean industry has achieved dramatic growth in a short time through continuous technical innovations. However, safety consciousness and management have not kept pace with industry growth. The characteristics of industrial accidents in socio-technical systems have become so complicated that it has been challenging for safety professionals to implement effective preventive measures because it is difficult to determine what is happening in the complex workplace. Thus far, they have focused on technical improvements and the requirements of OSH regulations to avoid legal responsibility. Accordingly, this study has used the systemic analysis method to explain the emergence of something unexpected in complex and multi-layered business structures, which is usually related to the variabilities of humans and organizations. This study chose a shipyard where a few fatal accidents had occurred because the shipbuilding industry includes numerous variabilities, including obtaining orders, manpower supply, procurement, etc. Systemic analysis progressed using FRAM based on two accident cases related to the truss platform used in LNG vessels. The outcome shows that each function within the system has its variabilities and has become coupled or dependent on other functions, increasing the possibility of accidents. This analysis method can provide OSH professionals with practical techniques for explaining what is happening in a complex socio-technical system and how to take proper measures.

Exergy analysis on the power recovery of LNG supply system (냉열 에너지의 동력 회수에 대한 엑서지 해석 방법에 관한 연구)

  • Park, Il-Hwan;Kim, Choon-Seong
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • The expansion work that is wasted through the irreversible expansion through the PC valve of decompression process of the natural gas governor station can be recovered by replacing the process by an isentropic expansion. The energy and exergy analyses for the two decompression process models of power producing and current decompression process model are presented. Analysis results showed that the exergy by gas supply is 56.29%, the exergy by producing power is 32.12 % in case of preheating system and 22.52% in case of non-preheating system. The dead exergy at the PCV is generated much more network. As these results, the usefulness of exergy analysis is verified.

  • PDF