• Title/Summary/Keyword: LNG 연료 시스템

Search Result 59, Processing Time 0.021 seconds

The development of fuel processor for compact fuel cell cogeneration system (소형 열병합 연료전지 연계형 연료처리시스템 개발)

  • Cha, Jung-Eun;Jun, Hee-Kwon;Park, Jung-Joo;Ko, Youn-Taek;Hwang, Jung-Tae;Chang, Won-Chol;Kim, Jin-Young;Kim, Tae-Won;Kim, In-Ki;Jeong, Young-Sik;Kal, Han-Joo;Yung, Wang-Rai;Jung, Woon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.323-327
    • /
    • 2009
  • To extract hydrogen for stack, fuels such as LPG and LNG were reformed in the fuel processor, which is comprised of desulfurizer, reformer, shift converter, CO remover and steam generator. All elements of fuel processor are integrated in a single package. Highly active catalysts (desulfurizing adsorbent, reforming catalyst, CO shift catalyst, CO removal catalyst) and the various burners were developed and evaluated in this study. The performance of the developed catalysts and the commercial ones was similar. 1 kW, 5 kW class fuel processor systems using the developed catalyst and burner showed efficiency of 75 %(LHV, for LNG). The start-up time of the 1 kW class fuel processor was less than 50 minutes and its volume including insulation was about 30 l. The start-up time of 3 kW and 5 kW class fuel processors with the volume of 90 l and 150 l, respectively, was about 60 minutes. In the case of LPG fuel, efficiency, volume and start-up time of 1kW class fuel processor showed 73 %(LHV), < 60 l and < 60 min, respectively. Advanced fuel processor showed more highly efficiency and shorter start-up time due to the improvement of heat exchanger and operating method. 1 kW and 3 kW class fuel processors have been evaluated for reliability and durability including with on/off test of developed catalysts and burner.

  • PDF

Characteristics of boil-off-gas partial re-liquefaction systems in LNG ships (LNG선박용 BOG 부분재액화 시스템 특성 연구)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.174-179
    • /
    • 2016
  • To protect the ocean environment, the use of liquefied natural gas (LNG) carriers, bunkering ships, and fueled ships is increasing. Recently, Korean shipbuilders have developed and supplied a partial reliquefaction facility for boil-off-gas (BOG). Despite reasonable insulation, heat leakage in vessel storage tanks causes LNG to be continuously evaporated as BOG. This research analyzed the maximum liquid yield rate for various partial reliquefaction systems (PRS) and considered related factors affecting yields. The results showed a liquid yield of 48.7% from an indirect PRS system (heat exchanges between cold flash gas and compressed natural gas), and 41% from a direct PRS system (BOG is mixed with flash gas and discharged from a liquid-vapor separator). The primary factor affecting liquid yield was heat exchanger effectiveness; the exchanger's efficiency and insulation characteristics directly affect the performance of BOG reliquefaction systems.

A Study on Development of Mobile LNG Yard Tractor Refueling Standards (이동식 LNG 야드트랙터 충전 기준 개발 연구)

  • Ryou, Young-don;Yu, Chul-hee;Koo, Bon-deuk;Lee, Dong-won
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.59-64
    • /
    • 2018
  • As part of measures to reduce fine dust, the government is promoting a project to convert the fuel of Yard Tractors(YT, tractors operated at ports), from diesel to LNG (Liquefied Natural Gas). While a port having a small number of yard tractors, it is not proper to construct a stationary LNG fueling station and supply LNG to YT due to a problem of BOG (Boil off gas) generation. Therefore, it is necessary to make a regulation and a standard on mobile LNG YT refueling station installation and inspection as an alternative. In this study, we have investigated domestic and foreign mobile LNG refueling cases and refueling standards, including the USA and Europe. In addition, we have suggested the risk reduction method according to the cause after investigation of the cause of LNG accidents. And last, based on the proposed risk reduction measures, we have proposed an amendment to the Regulation of the Urban Gas Business Law in Korea. The proposed mobile LNG YT refueling amendment of the Regulation includes ; maintenance of the safety distance from the protection facility, installation of an interlock device to prevent refueling in places other than the authorized place, installation of the identification system through biometrics, separation of the tank lorry and tow vehicle before refueling, checking the wheel fixed status of tank lorry before refueling, construction of the impounding area, safety measures before, during and after refueling, etc. The safety standards proposed in this study could be used as a reference in establishing standards for mobile LNG vehicle refueling in the near future.

Optimal Gas Detection System in Cargo Compressor Room of Gas Fueled LNG Carrier (가스추진 LNG 운반선의 가스 압축기실에 설치된 가스검출장치의 최적 배치에 관한 연구)

  • Lee, Sang-Won;Shao, Yude;Lee, Seung-Hun;Lee, Jin-Uk;Jeong, Eun-Seok;Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.617-626
    • /
    • 2019
  • This study analyzes the optimal location of gas detectors through the gas dispersion in a cargo compressor room of a 174K LNG carrier equipped with high-pressure cargo handling equipment; in addition, we propose a reasonable method for determining the safety regulations specified in the new International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC). To conduct an LNG gas dispersion simulation in the cargo compressor room-equipped with an ME-GI engine-of a 174 K LNG carrier, the geometry of the room as well as the equipment and piping, are designed using the same 3D size at a 1-to-1 scale. Scenarios for a gas leak were examined under high pressure of 305 bar and low pressure of 1 bar. The pinhole sizes for high pressure are 4.5, 5.0, and 5.6mm, and for low pressure are 100 and 140 mm. The results demonstrate that the cargo compressor room will not pose a serious risk with respect to the flammable gas concentration as verified by a ventilation assessment for a 5.6 mm pinhole for a high-pressure leak under gas rupture conditions, and a low-pressure leak of 100 and 140 mm with different pinhole sizes. However, it was confirmed that the actual location of the gas detection sensors in a cargo compressor room, according to the new IGC code, should be moved to other points, and an analysis of the virtual monitor points through a computational fluid dynamics (CFD) simulation.

A Development of Converting Technology for the Marine Gasoline/CNG Bi-fuel Engine (선박용 가솔린/CNG Bi-fuel 엔진개조 기술 개발)

  • Park, Myung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.632-637
    • /
    • 2010
  • Natural gas, a fossil fuel contained mostly of methane, is one of the cleanest alternative fuels. It can be used in the form of compressed gas(CNG) or liquefied natural gas(LNG) to cars and trucks. And, dedicated natural gas vehicles are designed to run on natural gas only, while Bi-fuel vehicles can also run on gasoline or CNG, especially, bi-fuel can be defined as the simultaneous combustion of two fuels. In this study, converted gasoline marine system to CNG Bi-fuel system which is made up of injector, regulator, tank and ECU is converted. And estimated the fuel system and engine power compared the result with gasoline engine is estimated. As a result, CNG engine shows low exhaust emissions but maxium power is 7% reduced compared to gasoline engine.

A Study on Floating Offshore LNG Bunkering System and its Economic Analysis (해상부유식 LNG 벙커링 시스템 R&D사업의 경제성 분석)

  • Seo, Sunyae;Cho, Sungwoo
    • Journal of Korea Port Economic Association
    • /
    • v.30 no.4
    • /
    • pp.69-89
    • /
    • 2014
  • The business performance of port industry is steadily getting worse due to international environmental regulation. The port industry should be prepared according to ambient condition change. IMO(International Maritime Organization) is tightening up environmental regulation of vessel and maritime industry field. ECA(Emission Control Area), starting with the Baltic, has initialized and has been expanded. Korea must strengthen the control of vessel in accordance with IMO's restriction, if Korea is designated as emission control area. These situations cause the expansion of LNG-fuelled ships. Add to the larger trend of ships, Korean government should be done a preemptive action against LNG bunkering industry. This study proposes the concept of floating offshore LNG bunkering system and is conducted its economic feasibility evaluation based on empirical analysis. We examine the theoretical foundation and basic information via "A Planning Study on the Engineering Development of Floating Offshore LNG Bunkering Terminal" in 2013 and we evaluate the business potential by using the report above mentioned. The results of this study are as follows. The values of B/C analysis are between 0.679 and 2.516 depending on market share and R&D contributiveness. In case of 10.9%(market share), if market share are 50% and 60%, the value of B/C analysis are 0.697 and 0.837 respectively. Except in two cases, all remaining values are over 1.0. Moreover, the research is conducted sensitivity analysis to remove the project uncertainty. In order to maintain economical validity, a project manager have to establish business strategies which are not to cause increase of expense and sustain market share and R&D contributiveness in the scenario with normal levels.

The development of High efficiency fuel processor for technical independence 5kW class fuel cell system (기술자립형 5kW 연료전지 시스템 구축을 위한 고효율 연료변환기 개발)

  • Lee, Soojae;Choi, Daehyun;Jun, Heekwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.123.2-123.2
    • /
    • 2010
  • Fuel Cell cogeneration system is a promising technology for generating electricity and heat with high efficiency of low pollutant emission. We have been developed 5kW class fuel cell cogeneration system for commercial and residential application. The fuel processor is a crucial part of producing hydrogen from the fossil fuels such as LNG and LPG. The 5kW class high efficiency fuel processor consists of steam reformer, CO shift converter, CO preferential oxidation(PrOx) reactor, burner and heat exchanger. The one-stage CO shift converter process using a metal oxide catalyst was adopted. The efficiency of 5 kW class fuel processor shows 75% based on LHV. In addition, for the purpose of continuous operation with load fluctuations in the commercial system for residential use, load change of fuel processor was tested. Efficiency of 30%, 50%, 70% and 100% load shows 75%, 75%, 73% and 72%(LHV), respectively. Also, during the load change conditions, the product gas composition was stable and the outlet CO concentration was below 5 ppm. The Fuel processor operation was carried out in residential fuel cell cogeneration system with fuel cell stack under dynamic conditions. The 5kW class fuel processor have been evaluated for long-term durability and reliability test including with improvement in optimal operation logic.

  • PDF

Development of a Decision Making Model for Construction Management in LNG Plant Construction - Focused on Construction Stage - (LNG 공사의 건설사업관리 의사결정지원모델 개발 - 시공단계 중심 -)

  • Park, Hwan Pyo;Han, Jae Goo;Chin, Kyung Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.47-57
    • /
    • 2014
  • LNG plant projects tend to be implemented in overseas owing to its characteristics, so their project management scheme is somewhat different from those of general projects. Value chain in a LNG plant project includes exploration/production of gases, physical liquefaction/chemical conversion processes, transportation and storage. Key factors in the chain include liquefaction process (including ultra-low temperature liquefaction) to convert natural gas into liquid materials or fuel, and Front End Engineering Design (FEED) package, as well as Engineering, Procurement and Construction (EPC) technology comprising control, operation and construction. Success of a complex LNG plant project implemented in overseas depends on decision-making process in project management. Accordingly, to develop a decision-making model in of plant construction, the study extracted none factors in project management by EPC stage and assessed importance of each factor. The result showed that items in both project management and project risk management are important. Especially, the study developed a decision-making model in the construction stage of a LNG plant project based on the project management factors and importance assessment. The developed decision-making model would lay groundwork in building a decision-making system in construction stage of project management.

A study on Control System of the Heat Treating Furnace (열처리로 제어시스템 개발)

  • Kim, Sang-Yong;Park, Soo-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.405-410
    • /
    • 2011
  • The heat treatment of the steel is very important part on the forging industry. It is also effect to price competitiveness. The burner control system of the heat treating furnace is related LNG gas saving and fixed manufactured goods rate. This study show the burner control performance of the heat treating furnace. The result developed the performance of the heat treating furnace and show energy saving.

열병합발전시스템 도입한 수도권 최초의 아파트

  • 에너지절약전문기업협회
    • The Magazine for Energy Service Companies
    • /
    • s.22
    • /
    • pp.18-21
    • /
    • 2003
  • 인천시 남동구 만수동에 위치한 만수주공4단지아파트에서 지난해 7월부터 10월까지 LNG를 연료로 사용하는 340kW 2기, 228kW 1기 등 3기의 열병합발전설비와 시간당 5.5Gcal를 생산하는 중온수 고효율보일러 3대를 설치했다. 29억원을 투자해 연간 $23.4\%$, 6억8천만원의 에너지절감효과를 거둘 수 있을 것으로 예상되고 있으며, 이 아파트의 성공적인 도입사례는 향후 수도권에 열병합 아파트의 확산을 가져올 것으로 기대되고 있다.

  • PDF