• Title/Summary/Keyword: LNG (Liquefied Natural Gas) quality

Search Result 3, Processing Time 0.015 seconds

A Study on LNG Quality Analysis using a Raman Analyzer (라만분석기를 이용한 LNG 품질 분석 실증 연구)

  • Kang-Jin Lee;Woo-Sung Ju;Yoo-Jin Go;Yong-Gi Mo;Seung-Ho Lee;Yoeung-Chul Kim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.70-79
    • /
    • 2024
  • Raman analyzer is an analytical technique that utilizes the "Raman effect", which occurs when light is scattered by the inherent vibrations of molecules. It is used for molecular identification and composition analysis. In the natural gas industry, it is widely used in bunkering and tank lorry fields in addition to LNG export and import terminals. In this study, a LNG-specific Raman analyzer was installed and operated under actual field conditions to analyze the composition and principal properties (calorific value, reference density, etc.) of LNG. The measured LNG composition and calorific value were compared with those obtained by conventional gas chromatograph that are currently in operation and validated. The test results showed that the Raman analyzer provided rapid and stable measurements of LNG composition and calorific value. When comparing the calorific value, which serves as the basis for LNG transactions, with the results from conventional gas chromatograph, the Raman analyzer met the acceptable error criteria. Furthermore, the measurement results obtained in this study satisfied the accuracy criteria of relevant international standards (ASTM D7940-14) and demonstrated similar outcomes compared to large-scale international demonstration cases.

A study on development of automatic welding system for corrugated membranes of the LNG tank (LNG 탱크의 주름진 내벽박판용 자동용접시스템의 개발에 관한 연구)

  • 유제용;유원상;나석주;강계형;한용섭
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.99-106
    • /
    • 1996
  • Development of an automatic TIG welding system incorporating a vision sensor and torch control mechanism leads to an improved welding quality and greater production efficiency. The automatic welding system should be greatly restricted in its size and weight for the LNG(Liquefied Natural Gas) storage tank and also provide a unique torch rotating mechanism which keeps the torch tip in the constant position while the angle is changed continuously to maintain the welding torch substantially perpendicular to the weld line. The developed system is driven by two translation axes X, Z and one rotational axis. A moving line window method is adopted to the image recognition of the corrugated membranes with specular reflection. This method decides original laser stripe patterns in image which is affected by multi-reflection. A self-teaching algorithm, which guides the automatic welding machine with the information provided by the CCD camera without any previous learning of a reference trajectory, was developed for tracking the corrugated membrane of the LNG tank along the weld line.

  • PDF

A study on the developments of STCW training of seafarers on ships applying in the IGF Code

  • Han, Se-Hyun;Lee, Young-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1054-1061
    • /
    • 2015
  • The International Maritime Organization (IMO) has been regulating emissions by making mandatory the compliance with institutions aimed at protecting air quality such as the Energy Efficiency Design Index (EEDI), Ship Energy Efficiency Management Plan (SEEMP) and Tier III. Under the circumstances, one of the response measures considered to be the most feasible is the replacement of existing marine fuel with Liquefied Natural Gas (LNG). The industry has been preemptively building infrastructure and developing and spreading engine technology to enable the use of LNG-fueled ships. The IMO, in turn, recently adopted the International Code of Safety for Ships Using Gases or Other Low-Flash-Point Fuels (IGF Code) as an institutional measure. Thus, it is required to comply with regulations on safety-related design and systems focused on response against potential risk for LNG-fueled ships, in which low-flash-point fuel is handled in the engine room. Especially, the Standards of Training, Certification and Watchkeeping (STCW) Convention was amended accordingly. It has adopted the qualification and training requirements for seafarers who are to provide service aboard ships subject to the IGF Code exemplified by LNG-fueled ships. The expansion in the use of LNG-fueled ships and relevant facilities in fact is expected to increase demand for talents. Thus, the time is ripe to develop methods to set up appropriate STCW training courses for seafarers who board ships subject to the IGF Code. In this study, the STCW Convention and existing STCW training courses applied to seafarers offering service aboard ships subject to the IGF Code are reviewed. The results were reflected to propose ways to design new STCW training courses needed for ships subject to the IGF Code and to identify and improve insufficiencies of the STCW Convention in relation to the IGF Code.