• Title/Summary/Keyword: LNG연료 선박

Search Result 71, Processing Time 0.024 seconds

Numerical Assessment of LNGC Berthing Operation to FLBT (FLBT를 향해 접안하는 LNGC의 수치해석 및 안정성 평가)

  • Jung, Sung-Jun;Jung, Dong-Woo;Oh, Seung-Hoon;Kim, Yun-Ho;Jung, Dong-Ho
    • Journal of Navigation and Port Research
    • /
    • v.45 no.3
    • /
    • pp.87-94
    • /
    • 2021
  • The IMO has adopted emission standards that strictly restrict the use of bunker C oil for vessels. Accordingly, research and bunkering pilot projects for LNG fueled ships are being actively carried out, which is expected to substantially reduce environmental pollution. In this study, we have adopted the turret moored Floating LNG Bunkering Terminal (FLBT) designed to receive the LNG from LNGCs and to transfer LNG to LNG bunkering shuttles in ship to ship moored condition. Numerical simulations have been performed with a 1-year return period of wind, wave, and current. Damping values of numerical model were adjusted from the results of model tests to obtain accurate simulation results. The results confirm safe berthing operation during the 1-year return period of environmental condition. Safety depends on the direction of environment, with increasingly stable operation facilitated by the application of heading-control function of FLBT to avoid beam-sea conditions.

A Convergence study on the Research and Development process for the cryogenic submerged pump (극저온 잠액식 펌프 연구개발 프로세스에 관한 융합 연구)

  • Bae, Tae-Yong;Hwang, Gyu-Wan
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.10
    • /
    • pp.185-191
    • /
    • 2017
  • Recently, for such reasons as its inexpensive price and eco-friendliness, LNG has been under the limelight as an alternative fuel for vessels and is expected to grow rapidly in the industry. However, the technology level of domestic shipbuilders in manufacturing the cryogenic pump designed to supply LNG for vessels is so low that design and manufacturing technology of core parts are in urgent need. Therefore, this study describes the stepwise development procedure of cryogenic submerged centrifugal pump for ship LNG supply system. And it aims to suggest practical and specific development methods of the pump by approaching the characteristics of each step and major development items from the standpoint of engineering and management.

Performance Assessment of Navigation Seakeeping for Coastal Liquified-Natural-Gas Bunkering Ship (연안선박용 LNG 벙커링 전용선박의 내항성능 평가에 대한 연구)

  • Yi, Minah;Park, Jun-Bum;Lee, Chang-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.904-914
    • /
    • 2020
  • Through the Ministry of Trade, Industry, and Energy, South Korea is trying to support the "Building Project for Liquified Natural Gas (LNG) Bunkering Ship," centered on the Korea Gas Corporation, while the Ministry of Maritime Af airs and Fisheries is pushing to construct an LNG bunkering terminal at Busan New Port. LNG bunkering ships are essential for supplying LNG fuel from the terminal to the ships, resulting in the need for safety operation procedures. Therefore, in this study, the stability of a coastal LNG bunkering ship operating from Busan New Port to the anchorage in Busan Port was assessed to investigate the need for operational procedures for coastal LNG bunkering ships. Seakeeping analysis of the LNG bunkering ship was performed for each significant wave height by combining the response amplitude operator from the ship motion analysis under the potential flow theory with the actual observed sea data for five years and Texel, Marsen, and Arsloe (TMA) spectrum suitable for the Busan coast. The results showed that the roll and horizontal acceleration were the main risks that affected the navigation seakeeping performance above a significance wave height of 2 m. The operational periods of the LNG bunkering ship ranged from 83.3% to 99.9% of the total observation period.

A Study on Safety Assessment for Low-flashpoint and Eco-friendly Fueled Ship (친환경연료 선박의 가스누출 피해저감을 위한 연구)

  • Ryu Bo Rim;Duong Phan Anh;Kang Ho Keun
    • Journal of Navigation and Port Research
    • /
    • v.47 no.1
    • /
    • pp.25-36
    • /
    • 2023
  • To limit greenhouse gas emissions from ships, numerous environmental regulations and standards have been taken into effect. As a result, alternative fuels such as liquefied natural gas (LNG), liquefied petroleum gas (LPG), ammonia, and biofuels have been applied to ships. Most of these alternative fuels are low flashpoint fuels in the form of liquefied gas. Their use is predicted to continue to increase. Thus, management regulations for using low flash point fuel as a ship fuel are required. However, they are currently insufficient. In the case of LNG, ISO standards have been prepared in relation to bunkering. The Society for Gas as a Marine Fuel (SGMF), a non-governmental organization (NGO), has also prepared and published a guideline on LNG bunkering. The classification society also requires safety management areas to be designated according to bunkering methods and procedures for safe bunkering. Therefore, it is necessary to establish a procedure for setting a safety management area according to the type of fuel, environmental conditions, and leakage scenarios and verify it with a numerical method. In this study, as a feasibility study for establishing these procedures, application status and standards of the industry were reviewed. Classification guidelines and existing preceding studies were analyzed and investigated. Based on results of this study, a procedure for establishing a safety management area for bunkering in domestic ports of Korea can be prepared.

LNG/LPG marine accident scenarios considered relevant for building (LNG/LPG관련 해양사고 시나리오 구축에 대한 고찰)

  • Kang, Yu-Mi;An, jeing-Min;Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.205-207
    • /
    • 2015
  • LNG/LPG는 폭발가능성이 크기 때문에 매우 위험한 물질이다. LNG/LPG는 gas상태의 연료를 극 초저온에 고 압력 상태로 고농축한 액체 연료이다. 온도나 압력에 따라 물질의 상태가 변하기 때문에 폭발이나 화재가 일어날 수 있다. 하지만 무조건 사고가 일어나는 것은 아니며 현재까지도 화재나 폭발이 일어난 경우가 드물다. LNG/LPG선박은 충돌이나 파손 등 사고위기가 클수록 위험하다. 사고위기가 일어나는 요소로는 복잡한 항로, 많은 선박 수, 해마다 증가하는 LNG/LPG의 수요량 등이 있다. 본 연구에서는 LNG/LPG관련 해양사고 시나리오를 만들기 위해 사고 연계 고리(Accident chain)를 만들어 분석하였다. 해양사고의 연계 고리를 만들기 위해서는 story가 필요하다는 것을 알게 되었고, Risk를 통해 Peril과 Hazard를 분석 할 수 있었다. LNG/LPG의 위험성은 고압에 기인하는 위험, 화재위험, 동상위험, 화학반응의 위험, 질식 위험 등으로 분류 할 수 있었다. 아직까지는 LNG/LPG선박의 화재 및 폭발사고는 거의 일어나지 않았으나 매년 그 수요량이 증가하고 있고, 매우 위험한 물질임을 본 연구를 통해 알 수 있었다.

  • PDF

Experimental and Numerical Study of Berthing and Unberthing of LNG-Bunkering Vessels (실험 및 수치해석을 통한 LNG 벙커링 선박들의 이접안 안정성 평가 연구)

  • Jung, Sung-Jun;Oh, Seung-Hoon;Jung, Dong-Woo;Kim, Yun-Ho;Jung, Dong-Ho
    • Journal of Navigation and Port Research
    • /
    • v.44 no.6
    • /
    • pp.439-446
    • /
    • 2020
  • The IMO has adopted emission standards through Annex VI of the International Convention for the Prevention of Pollution from Ships (MARPOL) that strictly prohibit the use of bunker C oil for vessels. In this study, we have adopted the turret-moored Floating LNG-Bunkering Terminal (FLBT) which is designed to receive the LNG from LNGCs and transfer it to LNG-bunkering shuttles in side-by-side moored condition. Numerical analyses were carried out using the high-order boundary-element method for four vessels at various relative distances. Mean wave drift forces were compared in an operational sea state. A model test was performed in the ocean engineering basin at the Korea Research Institute of Ships & Ocean Engineering (KRISO) to verify the safety of the berthing/unberthing operation. In the model test, a jig was designed to simulate tug boats pushing or pulling the bunkering vessels, so that the friction force of the g operation was not affected. Safety depended on the environmental direction, with more stable operation possible if the heading-control function of FLBT is applied to avoid beam-sea conditions.