• Title/Summary/Keyword: LNG[liquefied natural gas]

Search Result 263, Processing Time 0.023 seconds

Thermodynamic Performance Analysis of Ammonia-Water Power Generation System Using Low-temperature Heat Source and Liquefied Natural Gas Cold Energy (저온 열원과 LNG 냉열을 이용하는 암모니아-물 동력 사이클의 열역학적 성능 해석)

  • Kim, Kyoung Hoon;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.483-491
    • /
    • 2014
  • In this study, a thermodynamic analysis was carried out for a combined power generation system using a low-temperature heat source in the form of sensitive energy and liquefied natural gas cold energy. An ammonia-water mixture, which is a zeotropic mixture, was used as the working fluid, and systems with and without a regenerator were comparatively analyzed. The effects of the mass fraction of ammonia and the condensation temperature of the working fluid on the system variables, including the net work production, exergy destruction, and thermal and exergy efficiencies, are analyzed and discussed. The results show that the performance characteristics of the system varied sensitively with the ammonia concentration or condensation temperature of the working fluid. The system without regeneration was found to be better in relation to the net work per unit mass of the source fluid, whereas the system with regeneration was better in relation to the thermal or exergy efficiency.

An Experimental Study on Mechanical Properties and Failure Behavior of Plywood (Plywood의 기계적 특성 및 파손 거동 분석에 관한 실험적 연구)

  • Cha, Seung-Joo;Kim, Jeong-Dae;Kim, Jeong-Hyeon;Oh, Hoon-Kyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.335-342
    • /
    • 2019
  • The objective of this study is to analyze the mechanical properties of plywood used as a thermal insulating material for LNG CCS (Liquefied Natural Gas, Cargo Containment System). It is created by bonding an odd number of parallel and perpendicular direction for preventing contraction and expansion of wood. Also plywood is widely used as LNG CCS insulating material because of its durability, light weight and high stiffness. Since LNG CCS is loaded with liquid cargo, the impact load by sloshing during operation and the wide temperature range (room temperature, low temperature, cryogenic temperature) exposed during loading, unloading should be considered. The thickness of the plywood which is used for the membrane type MARKIII was selected as the thickness of the test specimen. In this present study, plywood is analyzed by the fracture behavior and mechanical properties of plywood by temperature and grain direction. In addition, it is necessary to analyze the fracture shape and predict the fracture strain by using regression model because the critical load may cause cracks inside the tank, which may affect the leakage of cryogenic liquid.

Design and Economic Analysis of Low Pressure Liquid Air Production Process using LNG cold energy (LNG 냉열을 활용한 저압 액화 공기 생산 공정 설계 및 경제성 평가)

  • Mun, Haneul;Jung, Geonho;Lee, Inkyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.345-358
    • /
    • 2021
  • This study focuses on the development of the liquid air production process that uses LNG (liquefied natural gas) cold energy which usually wasted during the regasification stage. The liquid air can be transported to the LNG exporter, and it can be utilized as the cold source to replace certain amount of refrigerant for the natural gas liquefaction. Therefore, the condition of the liquid air has to satisfy the available pressure of LNG storage tank. To satisfy pressure constraint of the membrane type LNG tank, proposed process is designed to produce liquid air at 1.3bar. In proposed process, the air is precooled by heat exchange with LNG and subcooled by nitrogen refrigeration cycle. When the amount of transported liquid air is as large as the capacity of the LNG carrier, it could be economical in terms of the transportation cost. In addition, larger liquid air can give more cold energy that can be used in natural gas liquefaction plant. To analyze the effect of the liquid air production amount, under the same LNG supply condition, the proposed process is simulated under 3 different air flow rate: 0.50 kg/s, 0.75 kg/s, 1.00 kg/s, correspond to Case1, Case2, and Case3, respectively. Each case was analyzed thermodynamically and economically. It shows a tendency that the more liquid air production, the more energy demanded per same mass of product as Case3 is 0.18kWh higher than Base case. In consequence the production cost per 1 kg liquid air in Case3 was $0.0172 higher. However, as liquid air production increases, the transportation cost per 1 kg liquid air has reduced by $0.0395. In terms of overall cost, Case 3 confirmed that liquid air can be produced and transported with $0.0223 less per kilogram than Base case.

Design of Pile-Guide Mooring System for Offshore LNG Bunkering Terminal: A Case Study for Singapore Port (해상 LNG 벙커링 터미널용 파일 가이드 계류 시스템 설계: 싱가포르 항의 사례 연구)

  • Lee, Seong-yeob;Chang, Daejun
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.379-387
    • /
    • 2017
  • In this study, a pile-guide mooring system (PGMS) was designed for an offshore liquefied natural gas bunkering terminal (LNG-BT), which is an essential infrastructure for large LNG-fuelled ships. The PGMS consisted of guide piles to restrict five motions of the floater, except for heave, as well as a seabed truss structure to support the guide piles and foundation piles to fix the system to the seabed. Singapore port was considered for a case study because it is a highly probable ports for LNG bunkering projects. The wave height, current speed, and wind speed in Singapore port were investigated to calculate the environmental loads acting on the hull and PGMS. A load and resistance factor approach was used for the structural design, and a finite element analysis was performed for design verification. The steel usage of the PGMS was analyzed and compared with the material usage of a gravity-based structure under similar LNG capacity and water depth criteria. This paper also describes the water depth limit and wave conditions of the PGMS based on estimation of the initial investment and the present value profit difference. It suggests a suitable LNG-BT support system for various design conditions.

Analytical study of failure damage to 270,000-kL LNG storage tank under blast loading

  • Lee, Sang Won;Choi, Seung Jai;Kim, Jang-Ho Jay
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.201-214
    • /
    • 2016
  • The outer tank of a liquefied natural gas (LNG) storage tank is a longitudinally and meridianally pre-stressed concrete (PSC) wall structure. Because of the current trend of constructing larger LNG storage tanks, the pre-stressing forces required to increase wall strength must be significantly increased. Because of the increase in tank sizes and pre-stressing forces, an extreme loading scenario such as a bomb blast or an airplane crash needs to be investigated. Therefore, in this study, the blast resistance performance of LNG storage tanks was analyzed by conducting a blast simulation to investigate the safety of larger LNG storage tanks. Test data validation for a blast simulation of reinforced concrete panels was performed using a specific FEM code, LS-DYNA, prior to a full-scale blast simulation of the outer tank of a 270,000-kL LNG storage tank. Another objective of this study was to evaluate the safety and serviceability of an LNG storage tank with respect to varying amounts of explosive charge. The results of this study can be used as basic data for the design and safety evaluation of PSC LNG storage tanks.

Calculating the Mooring Force of a Large LNG Ship based on OCIMF Mooring Equipment Guidelines (OCIMF 계류설비지침 기반 대형 LNG선박 계류력 계산)

  • Wang, Jian;Noh, Jackyou
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.594-600
    • /
    • 2022
  • When a large liquefied natural gas (LNG) carrier is anchored at a coastal terminal, calculations on mooring forces of mooring cables induced by environmental loads such as strong winds and currents are needed to secure mooring safety. The advantages and disadvantages of several existing mooring force calculation methods are compared and analyzed with their application conditions. Resultingly, mooring equipment guidelines of the Oil Companies International Marine Forum (OCIMF) are chosen as the computational method for this study. In this paper, the mooring forces of a large LNG carrier with spectrum was calculated using the OCIMF mooring equipment guidelines. The calculation shows similar maximum forces resulted from the calculation using experiment data of a wind tunnel test. To verify the results, OPTIMOOR, a dedicated mooring force calculation software, is used to calculate the same mooring conditions. The results of both calculations show that the computational method recommended by OCIMF is safe and reliable. OPTIMOOR calculates more detailed tensile force of each mooring cable. Thus, the calculation on mooring forces of mooring cables of a large LNG carrier using OCIMF mooring equipment guidelines is verified as an applicable and safe method.

The liquefaction system of the exhaust gas using cold energy in underwater engine (수중기관에서 냉열을 이용한 배기가스 액화시스템 해석)

  • Lee, Geun-Sik;Jang, Yeong-Su;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1591-1602
    • /
    • 1996
  • In operating the underwater engines such as encountered in exploring submarines, the dumping of the exhaust gas out of the engine requires a large portion of the total power, frequently amounting to 25-30% of the power generated. This unfavorable circumstance can be cured by liquefying the exhaust gas and storing it. In the present study, two liquefaction systems were simulated to enhance the overall efficiency; one is a closed cycle diesel engine and the other is a closed cycle LNG engine. The liquefied natural gas (LNG) is chosen as a fuel, not only because its use is economical but also because its cold energy can be utilized within the liquefaction system. Since a mixture of oxygen and carbon dioxide is used as an oxidizer, liquefying carbon dioxide is of major concern in this study. For further improving this system, the intercooling of the compressor is devised. The necessary power consumed for the liquefying system is examined in terms of the related properties such as pressure and temperature of the carbon dioxide vessel as a function of the amount of the exhaust gas which enters the compressor. The present study was successful to show that much gain in the power and reduction of the vessel pressure could be achieved in the case of the closed cycle LNG engine. The compression power of exhaust gas were observed remarkably lower, typically only 6.3% for the closed cycle diesel engine and 3.4% for the closed cycle LNG engine respectively, out of net engine power. For practicality, a design -purpose map of the operating parameters of the liquefaction systems was also presented.

Proportional Flow Control Valve with PZT Actuator (압전식 비례제어밸브)

  • Yun, So-Nam;Kim, Chan-Yong;Ham, Young-Bog;Yoon, Seok-Jin;Lee, Kyung-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.758-762
    • /
    • 2005
  • Gas valve for domestic use is used for flow control of LPG (Liquefied Petroleum Gas) or LNG (Liquefied Natural Gas) of which pressure is about $200\;mmH_{2}O(\fallingdotseq0.0196\;[bar])$. Currently, two kinds of valves such as rotary type and button type are widely used in many applications. But, these valves have some problems that they are not controllable and reliable. Piezo actuation combined with modem microelectronics provides a reliable, quiet, low energy, infinitely adjustable gas valve. In this paper, gas valve using piezo actuator which are bimorph and a circle type was studied. Also, Prototype for gas valve was manufactured and characteristics of the prototype gas valve were analyzed.

Performance Characteristics of a Combined Regenerative Ammonia-Water Based Power Generation Cycle Using LNG Cold Energy (LNG 냉열을 이용하는 암모니아-물 복합 재생 동력 사이클의 성능 특성)

  • Kim, Kyounghoon;Oh, Jaehyeong;Jeong, Youngguan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.510-517
    • /
    • 2013
  • The ammonia-water based power generation cycle utilizing liquefied natural gas (LNG) as its heat sink has attracted much attention, since the ammonia-water cycle has many thermodynamic advantages in conversion of low-grade heat source in the form of sensible energy and LNG has a great cold energy. In this paper, we carry out thermodynamic performance analysis of a combined power generation cycle which is consisted of an ammonia-water regenerative Rankine cycle and LNG power generation cycle. LNG is able to condense the ammonia-water mixture at a very low condensing temperature in a heat exchanger, which leads to an increased power output. Based on the thermodynamic models, the effects of the key parameters such as source temperature, ammonia concentration and turbine inlet pressure on the characteristics of system are throughly investigated. The results show that the thermodynamic performance of the ammonia-water power generation cycle can be improved by the LNG cold energy and there exist an optimum ammonia concentration to reach the maximum system net work production.

Determination of the Optimal Operating Condition of the Hamworthy Mark I Cycle for LNG-FPSO (LNG-FPSO에의 적용을 위한 Hamworthy Mark I Cycle의 최적 운전 조건 결정)

  • Cha, Ju-Hwan;Lee, Joon-Chae;Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.733-742
    • /
    • 2010
  • In this study, optimization was performed to improve the conventional liquefaction process of offshore plants, such as a LNG-FPSO(Liquefied Natural Gas-Floating, Production, Storage, and Offloading unit) by maximizing the energy efficiency of the process. The major equipments of the liquefaction process are compressors, expanders, and heat exchangers. These are connected by stream which has some thermodynamic properties, such as the temperature, pressure, enthalpy or specific volume, and entropy. For this, a process design problem for the liquefaction process of offshore plants was mathematically formulated as an optimization problem. The minimization of the total energy requirement of the liquefaction process was used as an objective function. Governing equations and other equations derived from thermodynamic laws acted as constraints. To solve this problem, the sequential quadratic programming(SQP) method was used. To evaluate the proposed method in this study, it was applied to the natural gas liquefaction process of the LNG-FPSO. The result showed that the proposed method could present the improved liquefaction process minimizing the total energy requirement as compared to conventional process.