• Title/Summary/Keyword: LNA

Search Result 424, Processing Time 0.024 seconds

Design of a LNA-Mixer for 2.45GHz RFID Reader (2.45GHz 대역 RFID Reader 를 위한 LNA -Mixer 설계)

  • Lim, Tae-Seo;Ko, Jae-Hyeong;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.415-418
    • /
    • 2007
  • This paper presents the design and analysis of LNA-Mixer for 2.45GHz RFID reader. The LNA is implemented by PCSNIM method for low power consumption. The Mixer is implemented by using the Gilbert-type configuration, current bleeding technique, and the resonating technique for the tail capacitance. The connection between the two designed circuits is made by active balun. This LNA-Mixer has about 35dB for -40dBm input RF power, LO power is 0dBm and RF frequency is 2.45 GHz and IIP3 is -4dBm. The layout of LNA-Mixer for one-chip design in a $0.18-{\mu}m$ TSMC process has 2.6mm ${\times}$ 1.3mm size.

  • PDF

Performance Degradation of RF SOI MOSFETs in LNA Design Guide Line (RF SOI MOSFETs의 성능저하에 의한 LNA 설계 가이드 라인)

  • Ohm, Woo-Yong;Lee, Byung-Jin
    • 전자공학회논문지 IE
    • /
    • v.45 no.2
    • /
    • pp.1-5
    • /
    • 2008
  • In this work, RF performance degradation due to hot carrier effects in SOI MOSFET have been measured and analyzed. The LNA that designed at $V_{GS}=0.8V$, f=2.5GHz, gain is 16.51dB and noise figure is 1.195dB. After stress at SOI, the LNA's gain and noise figure change of 15.3dB and 1.44dB with before stress.

Design of a LNA-Mixer with on-chip balun for 2.45GHz RFID Applications (On-chip 발룬을 포함한 2.45GHz대역 RFID용 LNA-Mixer설계)

  • Lim, Tae-Seo;Ko, Jae-Hyeong;Jung, Hyo-Bin;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1982-1987
    • /
    • 2007
  • This paper presents the design and analysis of LNA-Mixer for 2.45GHz RFID reader. The LNA is implemented by PCSNIM method for low power consumption. The Mixer is implemented by using the Gilbert-type configuration, current bleeding technique and the resonating technique for the tail capacitance. The connection between the two designed circuits is made by active balun. This LNA-Mixer has about 22dB gain and 8.5dB Noise Figure for -50dBm input RF power, LO power is 0dBm, RF frequency is 2.45 GHz and IF frequency is 100kHz. The layout of LNA-Mixer for one-chip design in a 0.18-um TSMC process has $2.5mm{\times}1.0mm$ size.

A LNA for 2.4GHz Bluetooth application

  • 유정근;김정태;허창우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.386-389
    • /
    • 2003
  • 본 논문에서는 Bluetooth applications를 위한 Bipolar Transistor low noise amplifier (LNA)를 설계하였다. 설계된 LNA는 2.4GHz에서 14.31[dB]의 Gain과 1.59[dB]의 NF를 보였다. 또한 S11은 -13.5[dB], S22는 -21.4[dB]의 양호한 값은 보였다.

  • PDF

A Design on UWB LNA for Using $0.18{\mu}m$ CMOS ($0.18{\mu}m$ CMOS공정을 이용한UWB LNA)

  • Hwang, In-Yong;Jung, Ha-Yong;Park, Chan-Hyeong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.567-568
    • /
    • 2008
  • In this paper, we proposed the design on LNA for $3{\sim}5\;GHz$ frequency with Using $0.18{\mu}m$CMOS technology. The LNA gain is 12-15 dB, and noise figure is lower than 5 dB and Input/output matching is lower than 10 dB in frequency range from 3 GHz to 5 GHz. The topology, which common source output of cascode is reduced noise figure and improved gain. Input common gate amplifier extend LNA's bandwidth.

  • PDF

A Design on LNA/Down-Mixer for MB-OFDM m Using 0.18 μm CMOS (CMOS를 이용한 MB-OFDM UWB용 LNA/Down-Mixer 설계)

  • Park Bong-Hyuk;Lee Seung-Sik;Kim Jae-Young;Choi Sang-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.139-143
    • /
    • 2005
  • In this paper, we propose the design on LNA and Down-mixer for MB-OFDM UWB using $0.18\;{\mu}m$ CMOS. LNA, Down-mixer design result shows that it covers the frequency range ken 3 GHz to 5 GHz. The LNA gain is larger than 12.8 dB, and noise figure about 2.6 dB. Double balanced differential down-mixer is designed less than 2 dB gainflatness, and it has over 30 dB LO leakage, feedthrough characteristics.

Noise Analysis of Common Source CMOS Pair for Dual-Band LNA (이중밴드 저잡음 증폭기 설계를 위한 공통 소스 접지형 CMOS 쌍의 잡음해석)

  • 조민수;김태성;김병성
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.140-144
    • /
    • 2004
  • The selectable dual band LNA usually uses common source transistor pair each input of which is selectively driven at a different frequency in a series resonant form. This paper analyzes the degradation in noise figures of the MOSFET common source pair with series resonance when it is driven concurrently at both inputs with different frequencies as a concurrent dual band LNA. Results of analysis will be compared with the measured noise figures of CMOS LNA with double inputs fabricated in 0.18 $\mu\textrm{m}$ CMOS process. Additionally, analyzing the contributions of FET channel noise and source noise from the LNA operating in the other band, this paper proposes optimum matching topology which minimizes the added noises for concurrent operation.

Lateral Nasal Artery Perforator Flaps: Anatomic Study and Clinical Applications

  • Lombardo, Giuseppe AG;Tamburino, Serena;Tracia, Luciano;Tarico, Maria Stella;Perrotta, Rosario Emanuele
    • Archives of Plastic Surgery
    • /
    • v.43 no.1
    • /
    • pp.77-83
    • /
    • 2016
  • Background Previous studies have investigated facial artery perforators, but have reported inconsistent results regarding lateral nasal artery (LNA) perforators. Although several authors have described the use of LNA perforators for ala nasi and nasal sidewall reconstruction, the literature contains little information regarding the cadaveric dissection of LNA perforators, and most previously published studies have focused on facial artery perforators. Methods Sixteen hemifaces from eight fresh cadavers were dissected to study the LNA perforators. After the dissection was performed, the total length and diameter of the LNA and its perforators were measured. The quantity and the distribution of the LNA perforators supplying the overlying skin were then assessed. LNA perforator flaps were used for reconstruction in 10 nasal and perinasal defects. Results The mean total lengths of the LNA and its perforators were 49.37 mm and 16.06 mm, respectively. The mean diameters of the LNA and its perforators were 2.08 mm and 0.91 mm, respectively. Based on our findings, we mapped the face to indicate zones with a higher probability of finding perforators. No infection, hematoma, or complete flap necrosis were observed after the procedures. Conclusions Nasal reconstruction is a challenging procedure, and LNA propeller/V-Y perforator flaps are an excellent reconstructive option in certain cases. Based on our cadaveric study, we were able to identify an area in the upper third of the nasolabial groove with a high density of perforators.

Radio Frequency Interference on the GNSS Receiver due to S-band Signals (S 대역 신호에 의한 위성항법수신기의 RF 신호간섭)

  • Kwon, Byung-Moon;Shin, Yong-Sul;Ma, Keun-Su;Ju, Jeong-Gab;Ji, Ki-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.388-396
    • /
    • 2019
  • This paper describes the RF(Radio Frequency) interference on the GNSS receiver due to the S-band signals transmitted from the transmitters in the Test Launch Vehicle, and analyzes the cause of the RF interference. Due to the S-band signals that have relatively high power levels compared with GNSS signals, an LNA(Low Noise Amplifier) in the active GNSS antenna was saturated, and the intermodulation signal within GNSS in-bands was produced in the LNA whenever two S-band signals were received from the GNSS antenna. For these reasons, the C/N0 of the satellite signals in the GNSS receiver was attenuated severely. The design of the LNA was changed in order to protect the RF interference due to the S-band signals and the suppression capability of the RF interference was confirmed in the new LNA through the comparison of the old LNA.

A study on the design of LNA for Ku-band LNB module (Ku-band에서의 LNB 모듈을 위한 LNA 설계에 관한 연구)

  • Kwak, Yong-Soo;Chung, Tae-Kyung;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2034-2036
    • /
    • 2004
  • In this paper, a low noise amplifier (LNA) in receiver of Low Noise Block Down Converter (LNB) for direct broadcasting service (DBS) is implemented by using GaAs HEMT. The LNA is designed for operation between 10.7GHz-12.7GHz. The LNA consists of input, output matching circuits, DC-blocks and RF-chokes. Simulation result of the LNA shows that a noise figure is less than 1.4dB and a gain is greater than 9.2dB in the bandwidth of 10.7 to 12.7GHz with good flatness of 0.1dB.

  • PDF