• Title/Summary/Keyword: LNA(low Noise Amplifier)

Search Result 262, Processing Time 0.023 seconds

GaN-based Low Noise Amplifier MMIC for X-band Applications (X-대역 응용을 위한 GaN 기반 저잡음 증폭기 MMIC)

  • Byeong-Ok Lim;Joo-Seoc Go;Sung-Chan Kim
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.33-37
    • /
    • 2024
  • In this paper, we report the design and the measurement of a X-band low noise amplifier (LNA) monolithic microwave integrated circuit (MMIC) using a 0.25 ㎛ gate length microstrip GaN-on-SiC high electron mobility transistor (HEMT) technology. The developed X-band GaN-based LNA MMIC achieves small signal gain of 22.75 dB ~ 25.14 dB and noise figure of 1.84 dB ~ 1.94 dB in the desired band of 9 GHz to 10 GHz. Input and output return loss values are -11.36 dB ~ -24.49 dB and -11.11 dB ~ -17.68 dB, respectively. The LNA MMIC can withstand 40 dBm (10 W) input power without performance degradation. The chip dimensions are 3.67 mm × 1.15 mm. The developed GaN-based LNA MMIC is applicable to various X-band applications.

Design of 2.5V Si CMOS LNA for PCS (PCS용 2.5V Si CMOS 저잡음 증폭기 설계)

  • 김진석;원태영
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.129-132
    • /
    • 2000
  • In this paper, a 1.8㎓ low noise amplifier was designed and simulated using 0.2$\mu\textrm{m}$ Si CMOS process. Noise characteristics and s parameters were extracted for the 300$\mu\textrm{m}$ gate width and 0.25$\mu\textrm{m}$ gate length NMOS transistors. For high available power gain, each stage was designed cascode type. It revealed available power gain of 23.5dB, noise figure of 2.0dB, power consumption of 15㎽ at 2.5V. It was shown that designed low noise amplifier had good RF performance. Designed Si CMOS LNA is expected to be used for RF front-end in transceiver.

  • PDF

Design of 900 MHz CMOS Low Noie Amplifier (900 MHz CMOS 저잡음 증폭기의 설계)

  • 윤상영;윤헌일;정용채;정항근;황인갑
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.893-899
    • /
    • 2000
  • A 900 MHz low-noise amplifier(LNA) with a measured noise figure of 4.8 dB and an associated gain of 13.2 dB was fabricated in a 0.65 $\mu$m CMOS. The inductive source architecture of offers the possibility of achieving the best noise performance. At 900 MHz, the fabricated LNA dissipates 39 mW from a single 3 V power supply including the bias circuitry and provides -26dB input return loss, -17 dB output return loss, and an input 1-dB compression level of -12 dBm.

  • PDF

A MedRadio-Band Low Power Low Noise Amplifier for Medical Devices (의료기기용 MedRadio 대역 저전력 저잡음 증폭기)

  • Kim, Taejong;Kwon, Kuduck
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.62-66
    • /
    • 2016
  • This paper presents a MedRadio-band low power low noise amplifier for Medical Devices. A proposed MedRadio-band low power low noise amplifier adopts a current-reuse resistive feedback topology to increase overall gm and reduce power consumption. The gain of the LNA increases by the Q-factor of the additional series RLC input matching network, and its noise figure is minimized by the similar factor. Furthermore, it consumes low power because of low supply voltage and current reuse technique. By exploiting the $g_m$-booting and matching network property, the proposed MedRadio-band low noise amplifier achieves a noise figure of 0.85 dB, a voltage gain of 30 dB, and IIP3 of -7.9 dBm while consuming 0.18 mA from a 1 V supply voltage in $0.13{\mu}m$ CMOS technology.

Development of the Low Noise Amplifier for Cellular CDMA Using a Resistive Decoupling Circuit (저항 결합회로를 이용한 Cellular CDMA용 저잡음 증폭기의 구현)

  • 전중성;김동일
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.635-641
    • /
    • 1998
  • This paper presents development of a small size LNA operating at 824 ∼ 849 MHz used for a receiver of a CELLULAR CDMA Base station and a transponder. Using resistive decoupling circuits, a signal at low frequency is dissipated by a resistor. This design method increases the stability of the LNA and is suitable for input stage matching. The LNA consists of low noise GaAs FET ATF-10136 and internally matched VNA-25. The LNA is fabricated with both the RF circuit and the self-bias circuits in aluminum housing. As a result, the characteristics of the LNA implemented here shows above 35dB in gain and below 0.9dB in noise figure, 18.6dBm P1dB power, a typical two tone IM3, -31.17dB with single carrier backed off 10dB from P1dB.

  • PDF

Design of Array Antenna with Active Antenna Element (LNA가 장착된 안테나 소자를 이용한 배열 안테나 설계)

  • 이용기;김성남;이상원;김영식;천창율
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.279-285
    • /
    • 2004
  • In this paper, low noise amplifier(LNA), aperture coupled patch antenna and $4{\times}4$ array antenna are designed in the frequency range from 11.7㎓ to 12㎓. Array antennas with and without LNA at the antenna element are fabricated and the performances are measured including noise figure(NF). The noise figure calculation for overall system was conducted and compared with the measured data to verify our measurement method. The measured overall noise figure of the array antenna with LNA at the antenna element is lower than that of array without LNA as expected.

Robustness Evaluation of GaN Low-Noise Amplifier in Ka-band (Ka-대역 GaN 저잡음 증폭기의 강건성 평가)

  • Lee, Dongju;An, Se-Hwan;Joo, Ji-Han;Kwon, Jun-Beom;Kim, Younghoon;Lee, Sanghun;Seo, Mihui;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.149-154
    • /
    • 2022
  • Due to high power capabilities and high linearity of GaN devices, GaN Low-Noise Amplifiers (LNAs) without a limiter can be implemented in order to improve noise figure and reduce chip area in radar receivers. In this paper, a GaN LNA is presented for Ka-band radar receivers. The designed LNA was realized in a 150-nm GaN HEMT process and measurement results show that the voltage gain of >23 dB and the noise figure of <6.5 dB including packaging loss in the target frequency range. Under the high-power stress test, measured gain and noise figure of the GaN LNA is degraded after the first stress test, but no more degradation is observed under multiple stress tests. Through post-stress noise and s-parameter measurements, we verified that the GaN LNA is resilient to pulsed input power of ~40 dBm.

A Novel Built-In Self-Test Circuit for 5GHz Low Noise Amplifiers (5GHz 저잡음 증폭기를 위한 새로운 Built-In Self-Test 회로)

  • Ryu Jee-Youl;Noh Seok-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1089-1095
    • /
    • 2005
  • This paper presents a new low-cost Built-In Self-Test (BIST) circuit for 50Hz low noise amplifier (LNA). The BIST circuit is designed for system-on-chip (SoC) transceiver environment. The proposed BIST circuit measures the LNA specifications such as input impedance, voltage gaih, noise figure, and input return loss all in a single SoC environment.

A 0.18-μm CMOS Low-Power and Wideband LNA Using LC BPF Loads (광대역 LC 대역 통과 필터를 부하로 가지는 0.18-μm CMOS 저전력/광대역 저잡음 증폭기 설계)

  • Shin, Sang-Woon;Seo, Yong-Ho;Kim, Chang-Wan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.76-80
    • /
    • 2011
  • This paper has proposed a 3~5 GHz low-power and wideband LNA(Low Noise Amplifier), which has been implemented in a 0.18-${\mu}m$ CMOS technology. The proposed LNA has basically the noise-cancelling topology to achieve a balun-function, wideband input matching, and relative low noise figure. In addition, it has utilized a 2nd-order LC-band-pass filter(BPF) as its output load to achieve higher power gain and lower noise figure with the lowest dc power consumption among previously reported works. The proposed amplifier consumes only 3.94 mA from a 1.8 V supply voltage. The simulation results show a power gain of more than +17 dB, a noise figure of less than +4 dB, and an input IP3 of -15.5 dBm.

Design of Bluetooth Receiver Front-end using High Gain Low Noise Amplifier and Microstrip Bandpass Filter (마이크로스트립 대역통과 여파기와 고이득 저잡음 증폭기를 이용한 블루투스 리시버 전반부 설계)

  • 손주호;최성열;윤창훈
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.2
    • /
    • pp.352-359
    • /
    • 2003
  • In this paper, we designed the bluetooth receiver using the microstrip bandpass filter and the high gain low noise amplifier with the 0.2$\mu\textrm{m}$ CMOS technology. A cascode inverter is adopted to implement the low noise amplifier and is one stage amplifier with a voltage reference and without the choke inductor. The designed 2.4GHz LNA was achieved a power gain of 18dB, a noise figure of 2.8dB, and the power consumption of 255mW at 2.5V power supply. Also, the microstrip receiver bandpass filter was designed that the center frequency was 2.45GHz, the bandwidth was 4% and the insert attenuation was -1.9dB. When the microstrip bandpass filter and LNA was simulated together the power gain was 16.3dB.

  • PDF