• Title/Summary/Keyword: LMTT Systems

Search Result 18, Processing Time 0.029 seconds

A Design of Optimal Controller with Friction Reduction of Linear Motor-based Transfer Technology via Lift-force Control (부상력을 이용한 LMTT(Linear Motor-based Transfer Technology) 의 마찰력 감소에 대한 최적 제어기 설계)

  • Seo, Jung-Hyun;Lee, Jin-Woo;Han, Seong-Hun;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1856-1857
    • /
    • 2006
  • The existing automation transfer systems such as AGV(Automated Guided Vehicle) have many problems (maintenance, accuracy, velocity, etc.) and wastes of a vast space and time. Hence we have suggested to LMTT(Linear Motor-based Transfer Technology). This paper deals with fundamental LMTT, and proposes a concept of mass reduction and propulsion control for LMTT when it is starting and reaching an object by using lift-force. By applying optimal controller and the repulsive lift forte in the LMTT, a large percent of vehicle weight is compensated and it reduces friction, then it needs less thrust force to propel the vehicle.

  • PDF

A Real Time Dispatching Rule for Shuttle Cars in Linear Motor-based Transfer Technology System Using Fuzzy Logic

  • Song Xianhui;Seo J.H.;Han S.H.;Lee K.S.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.345-348
    • /
    • 2006
  • LMTT (linear motor-based transfer technology) is horizontal transfer system in the maritime container terminal for the port automation. For LMTT system, shuttle cars are used instead of other types of cars. They are running on the routes which are stable on the terminal ground made of steel. The terminal scheduling complexity increases with the need of improving automation. It is necessary to make a good designed performance for the terminal system. This work presents a dispatching role using fuzzy logic for the shuttle cars. It considers the actual status of terminals and takes decisions on real time. A simulation is done to validate the role and two other dispatching rules to be compared.

  • PDF

Multi-step Predictive Control of LMTT using DR-FNN

  • Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.392-395
    • /
    • 2003
  • In the maritime container terminal, LMTT (Linear Motor-based Transfer Technology) is horizontal transfer system for the yard automation, which has been proposed to take the place of AGV (Automated Guided Vehicle). The system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that is consists of stator modules on the rail and shuttle car (mover). Because of large variant of mover's weight by loading and unloading containers, the difference of each characteristic of stator modules, and a stator module's trouble etc., LMCPS (Linear Motor Conveyance Positioning System) is considered as that the system is changed its model suddenly and variously. In this paper, we will introduce the soft-computing method of a multi-step prediction control for LMCPS using DR-FNN (Dynamically-constructed Recurrent Fuzzy Neural Network). The proposed control system is used two networks for multi-step prediction. Consequently, the system has an ability to adapt for external disturbance, cogging force, force ripple, and sudden changes of itself.

  • PDF

Optimum Design of the Mover for LMTT considering the Elastic Characteristic of the Linear Motor (리니어 모터의 전기적 특성을 고려한 LMTT용 이동체의 최적설계)

  • An T.W.;Han K.J.;Han D.S.;Lee S.W.;Lee K.M.;Lee J.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.399-400
    • /
    • 2006
  • LMTT(Linear Motor based Transfer Technology) is a new type of transfer system used in the maritime container terminal fur the port automation, and largely consists of a controller, shuttle car, and rail. The shuttle car is divided into the frame part, the driving part, and wheels. In order to design this system, various researches on each part of it must be conducted. In this study, we dealt with the optimum design for the frame part of the shuttle car designed from previous studies on the strength of the frame with respect to the number of cross beams to minimize the weight of the shuttle car and to satisfy design criteria of cargo-handling systems in container terminal. For the optimization of the frame, thicknesses of each beam were adopted as design variables, the weight of the frame as objective function, and stress and deflection per unit length as constraint condition.

  • PDF

Optimum Design for the Frame of the Shuttle Car for LMTT to transfer a Container (컨테이너 이송을 위한 LMTT용 셔틀 카의 프레임 치수최적설계)

  • Han, Dong-Seop;Han, Geun-Jo;Lee, Kwon-Hee;Shim, Jae-Joon;Lee, Seong-Wook
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.429-432
    • /
    • 2005
  • LMTT(Linear Motor based Transfer Technology) is a new type of transfer system used in the maritime container terminal for the port automation, and largely consists of a controller, shuttle car, and rail. The shuttle car is divided into the frame part, the driving part, and wheels. In order to design this system, various researched on each part of it must be conducted. In this study, we dealt with the optimum design for the frame part of the shuttle car designed from previous studies on the strength of the frame with respect to the number of cross beams to minimize the weight of the shuttle car and to satisfy design criteria of cargo-handling systems in container terminal. For the optimization of the frame, thicknesses of each beam were adopted as design variables, the weight of the frame as objective function, and stress and deflection per unit length as constraint conditions.

  • PDF

A Study about Finding Optimal Path Using HAS Dynamic Programming (RAS Dynamic Programming을 이용한 최적 경로 탐색에 관한 연구)

  • Kim, Jeong-Tae;Cho, Hyun-Chul;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.226-227
    • /
    • 2007
  • Significant increase of container flows in marine terminals requires more efficient automatic port systems. This paper presents a novel routing and collision avoidance algorithm of linear motor based shuttle cars using random access sequence dynamic programming (RAS DP). The proposed RAS DP is accomplished online for determining optimal paths for each shuttle car.

  • PDF

Routing and Collision Avoidance of Linear Motor based Transfer Systems using Online Dynamic Programming

  • Kim, Jeong-Tae;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.393-397
    • /
    • 2006
  • Significant increase of container flows in marine terminals requires more efficient automatic port systems. This paper presents a novel routing and collision avoidance algorithm of linear motor based shuttle cars using dynamic programming (DP). The proposed DP is accomplished online for determining optimal paths for each shuttle car. We apply our algorithm to Agile port terminal in USA.

  • PDF

DThe Effect of Thickness Ratio and Hight Ratio of Inner Beam on Strength and Stiffness of Frame in Shuttle Car for LMTT (Inner Beam의 두께비 및 높이비가 LMTT용 Shuttle Car의 Frame 강도 및 강성에 미치는 영향)

  • Han, GD.S.;Han, G.J.;Lee, K.S.;Shim, J.J.;Kim, T.H.
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.207-211
    • /
    • 2004
  • The final goal of this research is to establish the relative dangerousness D/B for factors on seakeeping performance. This D/B is essential to develope the seakeeping performance evaluation system built-on-ship. The system is composed of the apparatus for measuring a vertical acceleration to be generated by the ship's motions, computer for calculating the synthetic seakeeping performance index and monitor for displaying the evaluating diagram of navigational safety of ship. In this paper, a methodology on the establishment of the relative dangerousness D/B for factors on seakeeping performance is presented by a numerical simulations, playing an important role on the algorithm of the program for calculating the synthetic seakeeping performance index. Finally, It is investigated whether the relative dangerousness D/B can be realized an accurate values according to the loading conditions, weather conditions, wave directions end present ship's speed of a model ship.

Optimal Design of the Mover Considering the Electrical Characteristic of Linear Motor

  • Lee, Jung-Myung;Han, Dong-Seop;Lee, Seong-Wook;An, Tae-Won;Han, Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.321-324
    • /
    • 2006
  • LMTT(Linear Motor based Transfer Technology) is a new type of transfer system used in the maritime container terminal for the port automation, and largely consists of a controller, shuttle car, and rail. The shuttle car is divided into the frame part, the driving part, and wheels. In order to design this system, various researches on each part of it must be conducted. In this study, we dealt with the optimum design for the mover of the shuttle car designed from previous studies on the strength of the frame with respect to the number of cross beams to minimize the weight of the shuttle car and to satisfy design criteria of cargo-handling systems in container terminal. For the optimization of the mover, thicknesses of each beam were adopted as design variables, the weight of the frame as objective function, and stress and deflection per unit length as constraint condition.

  • PDF

Position Control of Linear Motor based Transfer Systems using Fuzzy Inference (퍼지논리를 이용한 선형모터 기반 이송시스템의 위치 제어)

  • Seo, Jung-Hyun;Lee, Jin-Woo;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.777-783
    • /
    • 2007
  • In this paper, we present a novel control approach for linear motor-based transfer systems in which friction reduction and enhancement of control performance are considered. In general, in such systems friction effects from rails and wheels, and internal bearings complicate control scheme since in particularly its dynamics are arbitrarily changed due to mass variation, detent force of motor systems, and gaps among stators. Our control approach is achieved to reduce this undesired friction dynamics using fuzzy system. We construct hybrid control approach for this control system which Is composed of a nominal control and a vertical control against friction. Fuzzy parameter vector is optimally determined from iterative simulation experiments. We demonstrate its superiority via numerical simulations comparing with a traditional control method.