• Title/Summary/Keyword: LMS rule

Search Result 10, Processing Time 0.029 seconds

Complex LMS Fuzzy Adaptive Equalizer with Decision Feedback (판정궤환이 있는 복소 LMS 퍼지 적응 등화기)

  • 이상연;김재범;이기용;이충웅
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.10
    • /
    • pp.2579-2585
    • /
    • 1996
  • In this paper, a complex fuzzy adaptive decision feedback equalizer(CFADFE) based on the LMS algorithm is proposed. The propoed equalizer is based on the complex fuzzy adaptive equalizer. The CFADFE isconstructed from a set of changeable complex fuzzy IF-THEN rules, where the 'IF' part of the rule is characterized by the state from a set of changealble complex fuzzy IF-THEN rules, where the 'IF' part of the rule is characterized by the state of the desision feedback. the role of decision feedback is to reduce the computational complexity. Computer simulation of the decision feedback. The role of decision feedback is to reduce the computational complexity. Computer simulation shosw that the CFADFE notonly reduces the computational complexity but also improves the performance compared with the conventional complex fuzzy adaptive equalizers. We also show that the adaptation speed is greatly improved by incorporating some linguistic information about the channel into the equalzer. It is applied to M-ary QAM digital communication system with linear and nonlinear complex channel characteristics.

  • PDF

Nonlinear Approximation in High-Dimensional Spaces Using Tree-Structured Intelligent Systems (수목구조 지능시스템을 이용한 고차원 공간 위에서의 비선형 근사)

  • 길준민;정창호;강성훈;박주영;박대희
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.25-36
    • /
    • 1996
  • Conventional radial-basis-function networks and fuzzy systems have serious problems in dealing with the non1inea:r approximations on high-dimensional spaces due to the explosive increase of the number of hidden nodes or fuzzy IF-THEN rules. In order to avoid such problems, this paper proposes a tree-structured intelligent system in which semi-local basis functions form its basic elements, and develops a training algorithm for the proposed system based on the modified genetic algorithm and LMS rule. Theoretical analysis is performed on the approximation capability of the proposed system, together with experimental studies which demonstrate the effectiveness of the developed methodology.

  • PDF

SCORM Based Recommendation of Learning Contents using Association Rule Mining (연관규칙을 응용한 SCORM 기반 학습 컨텐츠)

  • Hyun, Young-Soon;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2909-2911
    • /
    • 2005
  • 본 논문에서는 SCORM을 기반으로 하는 LMS 상에 수많은 컨텐츠들이 있을 경우, 적은 노력으로도 원하는 컨텐츠에 접근할 수 있도록 도움을 주는 컨텐츠 추천 기법을 제안하였다. 이 기법은 각 학습자별로 컨텐츠 이용도 성향을 분석한 후 분석된 결과를 바탕으로 사용자에게 현재 이용하고 있는 컨텐츠와 가장 연관성이 높다고 판단되는 컨텐츠를 연관규칙을 응용한 방법을 이용하여 추천한다.

  • PDF

Tree-Structured Fuzzy System (트리구조 퍼지시스템)

  • 정창호;강성훈;박주영;박대희
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.154-157
    • /
    • 1996
  • Conventional fuzzy systems have serious problems in dealing with the nonlinear approximations on high-dimensional spaces due to the explosive increase of the number of fuzzy IF-THEN rules. In order to avoid such problems, this paper proposes a tree-structured fuzzy system in which semi-local basis functions form its basic elements, and develops a training algorithm for the proposed system based on the evolution program and LMS rule. The experimental studies demonstrate the effectiveness of the developed methodology.

  • PDF

A Constructive Algorithm of Fuzzy Model for Nonlinear System Modeling (비선형 시스템 모델링을 위한 퍼지 모델 구성 알고리즘)

  • Choi, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.648-650
    • /
    • 1998
  • This paper proposes a constructive algorithm for generating the Takagi-Sugeno type fuzzy model through the sequential learning from training data set. The proposed algorithm has a two-stage learning scheme that performs both structure and parameter learning simultaneously. The structure learning constructs fuzzy model using two growth criteria to assign new fuzzy rules for given observation data. The parameter learning adjusts the parameters of existing fuzzy rules using the LMS rule. To evaluate the performance of the proposed fuzzy modeling approach, well-known benchmark is used in simulation and compares it with other modeling approaches.

  • PDF

A study on character segmentation and determination of linguistic type for recognition of on-line cursive characters (온라인 연속 필기 문자의 인식을 위한 문자간 구분 및 종류의 결정에 관한 연구)

  • 박강령;전병환;김창수;김우성;김재희
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.7
    • /
    • pp.61-69
    • /
    • 1997
  • With the vigorous researches in the character recognition, the need to recognize run-on multilingual handwritten characters is increasing to provide uses with more comfortable PUI(pen user interface) environments. In general, many intermediate word candidates word candidates are generated in run-on multilingual recognition because there is no information of ending position and linguistic kind of character. To remove unnecessary word candidates which are generated in run-on multilingual recognition, we classify them into two groups and select the best candidate among the word candidates in the group where the final characater is completed using 5 attributes. In this research, we propose a method in order to select the best one candidate. It is called WRM (Weighted ranking method). The weights are adaptively trained by LMS(Least mean square) learning rule. Results show that the abilities of decision makin gusing weights are much better than those not using weights.

  • PDF

Image Pattern Classification and Recognition by Using the Associative Memory with Cellular Neural Networks (셀룰라 신경회로망의 연상메모리를 이용한 영상 패턴의 분류 및 인식방법)

  • Shin, Yoon-Cheol;Park, Yong-Hun;Kang, Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.154-162
    • /
    • 2003
  • In this paper, Associative Memory with Cellular Neural Networks classifies and recognizes image patterns as an operator applied to image process. CNN processes nonlinear data in real-time like neural networks, and made by cell which communicates with each other directly through its neighbor cells as the Cellular Automata does. It is applied to the optimization problem, associative memory, pattern recognition, and computer vision. Image processing with CNN is appropriate to 2-D images, because each cell which corresponds to each pixel in the image is simultaneously processed in parallel. This paper shows the method for designing the structure of associative memory based on CNN and getting output image by choosing the most appropriate weight pattern among the whole learned weight pattern memories. Each template represents weight values between cells and updates them by learning. Hebbian rule is used for learning template weights and LMS algorithm is used for classification.

Self-Regularization Method for Image Restoration (영상 복원을 위한 자기 정규화 방법)

  • Yoo, Jae-Hung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • This paper suggests a new method of finding regularization parameter for image restoration problems. Wiener filter requires priori information such that power spectrums of original image and noise. Constrained least squares restoration also requires knowledge of the noise level. If the prior information is not available, separate optimization functions for Tikhonov regularization parameter are suggested in the literature such as generalized cross validation and L-curve criterion. In this paper, self-regularization method that connects bias term of augmented linear system and smoothing term of Tikhonov regularization is introduced in the frequency domain and applied to the image restoration problems. Experimental results show the effectiveness of the proposed method.

Two-stage ML-based Group Detection for Direct-sequence CDMA Systems

  • Buzzi, Stefano;Lops, Marco
    • Journal of Communications and Networks
    • /
    • v.5 no.1
    • /
    • pp.33-42
    • /
    • 2003
  • In this paper a two-stage maximum-likelihood (ML) detection structure for group detection in DS/CDMA systems is presented. The first stage of the receiver is a linear filter, aimed at suppressing the effect of the unwanted (i.e., out-of-grout) users' signals, while the second stage is a non-linear block, implementing a ML detection rule on the set of desired users signals. As to the linear stage, we consider both the decorrelating and the minimum mean square error approaches. Interestingly, the proposed detection structure turns out to be a generalization of Varanasi's group detector, to which it reduces when the system is synchronous, the signatures are linerly independent and the first stage of the receiver is a decorrelator. The issue of blind adaptive receiver implementation is also considered, and implementations of the proposed receiver based on the LMS algorithm, the RLS algorithm and subspace-tracking algorithms are presented. These adaptive receivers do not rely on any knowledge on the out-of group users' signals, and are thus particularly suited for rejection of out-of-cell interference in the base station. Simulation results confirm that the proposed structure achieves very satisfactory performance in comparison with previously derived receivers, as well as that the proposed blind adaptive algorithms achieve satisfactory performance.

PDA Personalized Agent System (PDA용 개인화 에이전트 시스템)

  • 표석진;박영택
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.345-352
    • /
    • 2002
  • 무선 인터넷을 이용하는 사용자는 정보의 양의 따른 시간적 통신비용의 증가 문제로 개인화 에이전트가 사용자의 관심에 따라 서비스를 제공하는 기능과 맞춤화된 정보를 제공하는 기능, 지식 기반 방식으로 정보를 예측하는 기능을 가지기를 바라고 있다. 본 논문에서는 이와 같이 무선 인터넷을 사용하는 사용자를 위한 PDA 개인화 에이전트 시스템을 구축하고자 한다. PDA 개인화 에이전트 시스템 구축을 위해 프로파일 기반의 에이전트 엔진과 사용자 프로파일을 이용한 지식기반 방식을 사용한다. 사용자가 웹페이지에서 행하는 행위들을 모니터링하여 사용자가 관심 가지는 문서를 파악하고 정보 검색을 통해 얻어진 문서를 분석하여 사용자 각각의 관심 문서로 나누어 서비스하게 된다. 모니터링 되어진 문서를 효과적으로 분석하기 위해 unsupervised clustering 기계학습 방식인 Cobweb을 이용한다. unsupervised 기계 학습은 conceptual 방식을 이용하여 검색되어진 정보를 사용자의 관심 분야별로 clustering한다. 클러스터링을 통해 얻어진 결과를 다시 기계학습을 통해 사용자 관심문서에 대한 프로파일을 생성하게 된다. 이렇게 만들어진 프로파일을 룰(Rule)로 만들어 이를 기반으로 사용자에게 서비스하게 된다. 이러한 룰은 사용자의 모니터링 결과로 얻어지기 때문에 주기적으로 업데이트하게 된다. 제안하는 시스템은 인터넷신문이나 웹진 등에서 사용자들에게 뉴스를 전달하기 위한 목적으로 생성하는 뉴스문서를 특정 대상으로 선정하였고 사용자 정보를 이용한 검색을 실시하고 결과로 얻어진 정보를 정보 분류를 통해 PDA나 휴대폰을 통해 사용자에게 제공한다. 상품을 검색하기 위한 검색노력을 줄이고, 검색된 대안들로부터 구매자와 시스템이 웹상에서 서로 상호작용(interactivity) 하여 해를 찾고, 제약조건과 규칙들에 의해 적합한 해를 찾아가는 방법을 제시한다. 본 논문은 구성기반 예로서 컴퓨터 부품조립을 사용해서 Template-based reasoning 예를 보인다 본 방법론은 검색노력을 줄이고, 검색에 있어 Feasibility와 Admissibility를 보장한다.매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of compu

  • PDF