다양한 병렬 컴퓨팅 시스템을 지원하기 위해서는 LLVM IR을 벡터/행렬을 보다 효과적으로 지원할 수 있도록 확장하는 것과 LLVM IR을 machine code로 바꾸어 주는 부분을 새로운 알고리즘으로 설계하여 구현하면 된다. IR 예제에서 보았듯이 기본적으로 RISC 명령어로 구성되어 있기 때문에 RISC 명령어 생성은 자연스럽게 생성되며, 벡터 또한 현재 지원가능한데 행렬 명령어는 지원되지 못하고 있다. 벡터/행렬을 보다 강력하게 지원하기 위한 새로운 IR 구조, 명령어 생성 알고리즘 및 관련 부분의 확장이 필요하다. 이를 위해 LLVM IR의 각 명령어를 (벡터/행렬을 위한) target architecture의 적당한 명령어로 mapping을 해주는 부분 (instruction selection 알고리즘)이 중요하다. LLVM IR 명령어의 의미를 파악하고, target architecture의 각 명령어 의미와 syntax를 비교하여, 패턴이 일치하는 명령어를 선택하여 mapping을 효율적으로 해줘야 한다.
최근 정적분석 기반의 시그니처 및 패턴 탐지 기술은 고도화되는 IT 기술에 따라 한계점이 드러나고 있다. 이는 여러 아키텍처에 대한 호환 문제와 시그니처 및 패턴 탐지의 본질적인 문제이다. 악성코드는 자신의 정체를 숨기기 위하여 난독화, 패킹 기법 등을 사용하고 있으며 또한, 코드 재정렬, 레지스터 변경, 분기문 추가 등 기존 정적분석 기반의 시그니처 및 패턴 탐지 기법을 회피하고 있다. 이에 본 논문에서는 이러한 문제를 해결할 수 있는 머신러닝을 통한 LLVM IR 코드 이미지 기반 악성코드 정적분석 자동화 기술을 제안한다. 바이너리가 난독화되거나 패킹된 사실에 불구하고 정적 분석 및 최적화를 위한 중간언어인 LLVM IR로 디컴파일한다. 이후 LLVM IR 코드를 이미지로 변환하여 CNN을 이용한 알고리즘 중 전이 학습 및 Keras에서 지원하는 ResNet50v2으로 학습하여 악성코드를 탐지하는 모델을 제시한다.
자체 수정 코드(Self-Modifying-Code)란 실행 시간 동안 스스로 실행 코드를 변경하는 코드를 말한다. 이런 기법은 특히 악성코드가 정적 분석을 우회하는 데 악용된다. 따라서 이러한 악성코드를 효과적으로 검출하려면 자체 수정 코드를 파악하는 것이 중요하다. 그동안 동적 분석 방법으로 자체 수정 코드를 분석해왔으나 이는 시간과 비용이 많이 든다. 만약 정적 분석으로 자체 수정 코드를 검출할 수 있다면 악성코드 분석에 큰 도움이 될 것이다. 본 논문에서는 LLVM IR로 변환한 바이너리 실행 프로그램을 대상으로 자체 수정 코드를 탐지하는 정적 분석 방법을 제안하고, 자체 수정 코드 벤치마크를 만들어 이 방법을 적용했다. 본 논문의 실험 결과 벤치마크 프로그램을 컴파일로 변환한 최적화된 형태의 LLVM IR 프로그램에 대해서는 설계한 정적 분석 방법이 효과적이었다. 하지만 바이너리를 리프팅 변환한 비정형화된 LLVM IR 프로그램에 대해서는 자체 수정 코드를 검출하기 어려운 한계가 있었다. 이를 극복하기 위해 바이너리를 리프팅 하는 효과적인 방법이 필요하다.
Kim, Jeehong;Kim, Inhyeok;Min, Changwoo;Jun, Hyung Kook;Lee, Soo Hyung;Kim, Won-Tae;Eom, Young Ik
ETRI Journal
/
제37권5호
/
pp.1001-1011
/
2015
Since just-in-time (JIT) has considerable overhead to detect hot spots and compile them at runtime, using sophisticated optimization techniques for embedded devices means that any resulting performance improvements will be limited. In this paper, we introduce a novel static Dalvik bytecode optimization framework, as a complementary compilation of the Dalvik virtual machine, to improve the performance of Android applications. Our system generates optimized Dalvik bytecodes by using Low Level Virtual Machine (LLVM). A major obstacle in using LLVM for optimizing Dalvik bytecodes is determining how to handle the high-level language features of the Dalvik bytecode in LLVM IR and how to optimize LLVM IR conforming to the language information of the Dalvik bytecode. To this end, we annotate the high-level language features of Dalvik bytecode to LLVM IR and successfully optimize Dalvik bytecodes through instruction selection processes. Our experimental results show that our system with JIT improves the performance of Android applications by up to 6.08 times, and surpasses JIT by up to 4.34 times.
악성코드 분석방법의 발전에 따라 악성코드의 분석우회기법도 나날이 발전하여 대량의 악성코드분석이 다양한 이유로 수행되지 않고 있다. 대부분의 악성코드는 소스코드가 없는 바이너리로 동적 분석이 동작하지 않는 원인을 파악하기 어렵다. 동적 분석이 실행되지 않는 악성코드들은 입력 값에 따라 악성코드가 동작하거나, 특정 시간대를 일치하는 등 다양한 트리거가 존재한다. 본 논문에서는 트리거가 필요한 악성코드에 대해 바이너리 리프팅(lifting) 기술을 활용한 새로운 동적 분석방법을 제안한다. 바이너리 리프팅 기술은 소스코드가 없는 바이너리를 LLVM IR 로 변환시키는 기술로서 이를 활용해 입력 값 유무에 따른 악성코드를 판별하고자 한다. 전달인자를 사용하는 코드와 사용하지 않는 코드간 LLVM IR 을 비교분석하여 전달인자에 따른 악성코드 동작 여부를 판별해 대량의 악성코드 동적 분석시스템의 분석률을 높이는 방안을 제안하고자 한다.
임베디드 기기는 시퀀스 제어 기능과 수치연산 기능을 활용하여 제어 프로그램에 따라 산업현장의 기기 등 다양한 자동화 시스템에 활용된다. 현재 임베디드 기기는 기업의 산업현장, 원전, 대중교통 같은 국가기반시설에서 제어 시스템으로 활용되고 있다. 따라서 임베디드 기기를 대상으로 하는 공격은 큰 경제적 손실과 사회적 손실을 야기할 수 있다. 임베디드 기기를 대상으로 하는 공격은 대부분 데이터, 코드 변조로서 제어 프로그램을 대상으로 이루어진다. 산업 자동화 임베디드 기기의 제어 프로그램은 일반적인 프로그래밍 언어와 달리 회로 구조를 표현하기 위하여 설계되었고, 대부분의 산업 자동화 제어 프로그램은 그래픽 기반 언어인 LAD로 설계되어있어 정적분석이 용이하지 않다. 이러한 특징으로 인하여 산업 자동화 제어 프로그램에 대한 취약점 분석 및 보안 관련 연구는 정형 검증, 실시간 모니터링 수준에 그친다. 또한 사전에 취약점을 탐지하고 공격에 대한 대비가 가능한 산업 자동화 제어 프로그램 정적분석 연구는 매우 저조한 실정이다. 따라서 본 연구에서는 산업 자동화 임베디드 프로그램에 대한 정적분석 효율성 증대를 위하여 회로 구조를 표현하기 위해 설계된 산업 자동화 제어 프로그램을 논리식으로 표현하기 위한 방법을 제시한다. 또한 다양한 제조사의 산업 자동화 제어 프로그램을 통합적으로 분석하기 위하여 LLVM IR을 활용한 중간어 변환 기술을 제안한다. LLVM IR을 활용함으로서 동적 분석에 대한 통합분석이 가능하다. 본 연구에서는 해당 방법에 대한 검증을 위하여 S 사(社)의 제어 프로그램을 대상으로 하여 논리식 형태의 중간어로 변환하는 프로그램의 시제품을 개발하였다.
안드로이드 OS는 대중적이고 중요한 시스템으로 자리 잡았고, 이에 따른 다양한 연구도 진행 중이다. 본 논문에서는 보안측면에서의 취약점 분석 방법을 제시하여, 각종 보안 위협을 예방하는데 기여하고자 한다. 안드로이드 라이브러리를 대상으로 Binary Lifting 기술을 사용하여 코드기반(LLVM IR) 퍼징을 진행하는, 취약점 분석 과정을 설계 수행한다.
새로운 임베디드 시스템을 개발할 때 응용 프로그램과 에뮬레이터, 그리고 컴파일러를 동시에 개발한다. 모든 시스템 구성요소의 성능을 최적으로 개발하기 위해서는 응용 프로그램 개발시 부분 최적화를 동시에 진행하여야 한다. 이를 위하여 소스 레벨 성능 분석기를 개발하면 응용 프로그램 소스 코드를 모듈별로 성능 평가하여 최적화하는 것이 가능하다. 일반적으로 응용 프로그램의 성능은 반복문에서 결정된다. 소스코드를 중간표현 (Intermediate Representation) 코드 생성기를 이용하여 변환하고, 변환된 중간 표현 단계의 명령어들로 실행시간을 분석 할 수 있다. 실행시간 성능 평가 결과를 바탕으로 응용 프로그램 코드를 개선하면 최종적으로 개발된 통합 플랫폼에서 더 나은 결과물을 얻을 수 있다. 본 연구에서는 새로운 임베디드 시스템의 개발중에 응용 프로그램을 동시 개발하는 과정에서 사용 가능한 소스 레벨 성능 분석기에 대하여 기술하고 있다. 성능 분석기를 사용하면 최종 임베디드 시스템의 성능을 보다 빠르게 최적화하는 것이 가능하게 된다.
C/C++에는 다수의 메모리 취약점이 존재하며 ASan은 낮은 오버헤드와 높은 탐지율로 이러한 메모리 취약점을 탐지하기 위해 광범위하게 사용되고 있다. 그러나 상용 프로그램 중 다수는 메모리를 효율적으로 사용하기 위해 Custom Memory Allocator(CMA)를 구현하여 사용하며, ASan은 이러한 CMA로부터 파생된 버그를 대부분 탐지하지 못한다. 이를 극복하기 위해 본 연구에서는 LLVM IR 코드를 RNN 신경망에 학습하여 CMA를 탐지하고, ASan이 CMA를 식별할 수 있도록 수정하여 CMA로부터 파생된 메모리 취약점을 탐지할 수 있는 도구인 CMASan을 제안한다. ASan과 CMASan의 성능 및 CMA 관련 취약점의 탐지 결과를 비교·분석하여 CMASan이 낮은 실행시간 및 적은 메모리 오버헤드로 ASan이 탐지하지 못하는 메모리 취약점을 탐지할 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.