• Title/Summary/Keyword: LLAH

Search Result 7, Processing Time 0.026 seconds

Performance Optimization of LLAH for Tracking Random Dots under Gaussian Noise (가우시안 잡음을 가지는 랜덤 점 추적을 위한 LLAH의 성능 최적화)

  • Park, Hanhoon
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.912-920
    • /
    • 2015
  • Unlike general texture-based feature description algorithms, Locally Likely Arrangement Hashing (LLAH) algorithm describes a feature based on the geometric relationship between its neighbors. Thus, even in poor-textured scenes or large camera pose changes, it can successfully describe and track features and enables to implement augmented reality. This paper aims to optimize the performance of LLAH algorithm for tracking random dots (= features) with Gaussian noise. For this purpose, images with different number of features and magnitude of Gaussian noise are prepared. Then, the performance of LLAH algorithm according to the conditions: the number of neighbors, the type of geometric invariants, and the distance between features, is analyzed, and the optimal conditions are determined. With the optimal conditions, each feature could be matched and tracked in real-time with a matching rate of more than 80%.

Performance Analysis of Brightness-Combined LLAH (밝기 정보를 결합한 LLAH의 성능 분석)

  • Park, Hanhoon;Moon, Kwang-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.138-145
    • /
    • 2016
  • LLAH(Locally Likely Arrangement Hashing) is a method which describes image features by exploiting the geometric relationship between their neighbors. Inherently, it is more robust to large view change and poor scene texture than conventional texture-based feature description methods. However, LLAH strongly requires that image features should be detected with high repeatability. The problem is that such requirement is difficult to satisfy in real applications. To alleviate the problem, this paper proposes a method that improves the matching rate of LLAH by exploiting together the brightness of features. Then, it is verified that the matching rate is increased by about 5% in experiments with synthetic images in the presence of Gaussian noise.

Performance Analysis of Modified LLAH Algorithm under Gaussian Noise (가우시안 잡음에서 변형된 LLAH 알고리즘의 성능 분석)

  • Ryu, Hosub;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.8
    • /
    • pp.901-908
    • /
    • 2015
  • Methods of detecting, describing, matching image features, like corners and blobs, have been actively studied as a fundamental step for image processing and computer vision applications. As one of feature description/matching methods, LLAH(Locally Likely Arrangement Hashing) describes image features based on the geometric relationship between their neighbors, and thus is suitable for scenes with poor texture. This paper presents a modified LLAH algorithm, which includes the image features themselves for robustly describing the geometric relationship unlike the original LLAH, and employes a voting-based feature matching scheme that makes feature description much simpler. Then, this paper quantitatively analyzes its performance with synthetic images in the presence of Gaussian noise.

Scale-Invariant Document Detection Algorithm Based on LLAH (스케일에 강인한 LLAH 기반 문서 인식 알고리즘)

  • Lee, Jaeha;Park, Jungjoo;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.161-162
    • /
    • 2016
  • 비슷한 코너의 모양을 가지는 다수의 글자가 포함된 문서 영상을 인식하는 일은 쉽지 않다. 일반적으로 성능이 우수하다고 알려진 SIFT 알고리즘은 코너를 기반으로 특징을 기술하는 알고리즘이기 때문에 각 글자가 비슷한 코너의 모양을 가지는 문서 영상 인식에서는 좋은 성능을 발휘하지 못한다. 반면, LLAH 는 각 단어의 크기를 알아내어 가우시안 필터와 이진화를 통해 단어를 하나의 점으로 나타내고 각 점과 점 사이의 기하 관계를 기술자로 표현하기 때문에 문서의 단어에서 점이 일관되게 추출된다면 좋은 인식 성능을 발휘한다. 그러나, 영상에서 단어의 크기를 알아내는 작업은 계산 측면에서 많은 비용을 필요로 한다. 이에 본 논문에서는 LLAH 를 사용하기 전에 반복적인 가우시안 필터와 이진화를 적용하여 단어의 크기를 알지 못하는 상황에서도 스케일에 강인하게 문서 영상을 인식할 수 있는 알고리즘을 제안한다.

  • PDF

Augmenting Text Document by Controlling Its IR-Reflectance (적외선 반사 특성 제어를 통한 텍스트 문서 증강)

  • Park, Hanhoon;Moon, Kwang-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.6
    • /
    • pp.882-892
    • /
    • 2017
  • Locally Likely Arrangement Hashing (LLAH) is a method that describes image features based on the geometry between their neighbors. Thus, it has been preferred to implement augmented reality on poorly-textured objects such as text documents. However, LLAH strongly requires that image features be detected with high repeatability and located at a distance from one another. To fulfill the requirement for text document, this paper proposes a method that facilitates the word detection in infrared (IR) range by adjusting the IR-reflectance of words. Specifically, the words are printed out with two different black inks: one is using the K(carbon black) ink only, the other is mixing the C(cyan), M(magenta), Y(yellow) inks. Since only the words printed out with the K ink is visible in IR range, a part of words are selected in advance to be used as features and printed out the K ink. The selected words can be robustly detected with high repeatability in IR range and this enables to implement augmented reality on text documents with high fidelity. The validity of the proposed method was verified through experiments.

Performance Analysis of Feature Detection Methods for Topology-Based Feature Description (토폴로지 기반 특징 기술을 위한 특징 검출 방법의 성능 분석)

  • Park, Han-Hoon;Moon, Kwang-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.2
    • /
    • pp.44-49
    • /
    • 2015
  • When the scene has less texture or when camera pose largely changes, the existing texture-based feature tracking methods are not reliable. Topology-based feature description methods, which use the geometric relationship between features such as LLAH, is a good alternative. However, they require feature detection methods with high performance. As a basic study on developing an effective feature detection method for topology-based feature description, this paper aims at examining their applicability to topology-based feature description by analyzing the repeatability of several feature detection methods that are included in the OpenCV library. Experimental results show that FAST outperforms the others.

Learning-based Word Segmentation for Text Document Recognition (텍스트 문서 인식을 위한 학습 기반 단어 분할)

  • Lomaliza, Jean-Pierre;Moon, Kwang-Seok;Park, Hanhoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.41-42
    • /
    • 2018
  • 텍스트 문서 영상으로부터 단어를 검출하고, LLAH(locally likely arrangement hashing) 알고리즘을 이용하여 이웃 단어 사이의 기하 관계를 표현하는 특징 벡터를 계산한 후, 특징 벡터를 비교함으로써 텍스트 문서를 효과적으로 인식하거나 검색할 수 있다. 그러나, 이는 문서 내 각 단어가 정확하고 강건하게 검출된다는 전제를 필요로 한다. 본 논문에서는 텍스트 내 각 라인을 검출하고, 각 라인 내에서 단어 사이의 간격과 글자 사이의 간격을 깊은 신경망(deep neural network)을 이용하여 학습하고 분류함으로써, 보다 카메라와 텍스트 문서 사이의 거리나 방향이 동적으로 변하는 조건에서 각 단어를 강건하게 검출하는 방법을 제안한다. 모바일 환경에서 제안된 방법을 구현하였으며, 실험을 통해 단어 사이의 간격과 글자 사이의 간격을 92.5%의 정확도로 구별할 수 있으며, 이를 통해 동적인 환경에서 단어 검출의 강건성을 크게 개선할 수 있음을 확인하였다.

  • PDF