• Title/Summary/Keyword: LITI

Search Result 5, Processing Time 0.026 seconds

Effect of Surface Modification of Donor Plate on the Fabrication of OLED Devices by LITI Process

  • Bae, Heung-Kwon;Kim, Jin-Hoo;Kwon, Hyeok-Yong;Lee, Yoon-Soo;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.784-786
    • /
    • 2009
  • Thermal transfer of emitting layer from the donor film to the substrates depends on the physical interaction between the donor film, the emitting layer, and the hole-transport layer (HTL). The interfacial adhesion between the donor film and the EML, the cohesive force of the EML, and the interfacial adhesion between the EML and the HIL have to be optimized to achieve good LITI pattern quality. It was found that surface pretreatment of the donor plate was important on the laser induced thermal transfer of the emitting layer onto the HIL layer of the OLED devices.

  • PDF

Fabrication of highly efficient polymeric phosphorescent light-emitting devices with Laser Induced Thermal Imaging (LITI) technique

  • Kim, Mu-Hyun;Suh, Min-Chul;Lee, Seong-Taek;Kwon, Jang-Hyuk;Chung, Ho-Kyoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.94-97
    • /
    • 2002
  • We report highly efficient phosphorescent-dye-doped polymeric light-emitting devices. The devices consist of a polymeric light-emitting layer comprising the phosphorescent dye, host, and matrix polymers. We patterned the phosphorescent-dye-doped polymeric layer with the LITI technique. The devices showed high efficiencies and good pattern quality to adapt to the development of full-color electroluminescent (EL) devices.

  • PDF

High Efficiency AMOLED Using Hybrid of Small Molecule and Polymer Materials Patterned by Laser Transfer

  • Chin, Byung-Doo;Suh, Min-Chul;Kim, Mu-Hyun;Kang, Tae-Min;Yang, Nam-Choul;Song, Myung-Won;Lee, Seong-Taek;Kwon, Jang-Hyuk;Chung, Ho-Kyoon;Wolk, Martin B.;Bellmann, Erika;Baetzold, John P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.163-166
    • /
    • 2003
  • Laser-Induced Thermal Imaging (LITI) is a laser addressed patterning process and has unique advantages, such as high-resolution patterning with over-all position accuracy of the imaged stripes within 2.5 micrometer and scalability to large-size mother glass. This accuracy is accomplished using real-time error correction and a high -resolution stage control system that includes laser interferometers. Here the new concept of mixed hybrid system which complement the advantages of small molecular and polymeric materials for use as an OLED; our system can realize the easy processing of polymers and high luminance efficiency of recently developed small molecules. LITI process enables to pattern the stripes with excellent thickness uniformity and multi-stacking of various functional layers without using any type of fine metal shadow mask. In this study, we report a full-color hybrid OLED using the multi-layered structure of small molecular/polymeric species.

  • PDF

High Efficiency AMOLED using Hybrid of Small Molecule and Polymer Materials Patterned by Laser Transfer

  • Chin, Byung-Doo;Suh, Min-Chul;Kim, Mu-Hyun;Kang, Tae-Min;Yang, Nam-Choul;Song, Myung-Won;Lee, Seong-Taek;Kwon, Jang-Hyuk;Chung, Ho-Kyoon;Wolk, Martin B.;Bellmann, Erika;Baetzold, John P.
    • Journal of Information Display
    • /
    • v.4 no.3
    • /
    • pp.1-5
    • /
    • 2003
  • Laser-Induced Thermal Imaging (LITI) is a laser addressed patterning process and has unique advantages such as high-resolution patterning with over all position accuracy of the imaged stripes of within 2.5 micrometer and scalability to large-size mother glass. This accuracy is accomplished by real-time error correction and a high-resolution stage control system that includes laser interferometers. Here the new concept of hybrid system that complement the merits of small molecule and polymer to be used as an OLED; our system can realize easy processing of light emitting polymers and high luminance efficiency of small molecules. LITI process enables the stripes to be patlerned with excellent thickness uniformity and multi-stacking of various functional layers without having to use any type of fine metal shadow mask. In this study, we report a full-color hybrid OLED using the multi-layered structure consisting of small molecules and polymers.

New polymeric host material for efficient organic electro phosphorescent devices

  • Jung, Choong-Hwa;Park, Moo-Jin;Eom, Jae-Hoon;Shim, Hong-Ku;Lee, Seong-Taek;Yang, Nam-Choul;Liand, Duan;Suh, Min-Chul;Chin, Byung-Doo;Hwang, Do-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.843-845
    • /
    • 2009
  • A polymeric host for triplet emitters composed of N-alkylcarbazole and tetramethylbenzene units was successfully synthesized. Efficient energy transfer was observed between this polymeric host and green phosphorescent dyes. The device fabricated using 5 wt% green 1 in the polymeric host as the emitting layer showed the best performance. Thin films of this host-guest system, exhibiting clear stripe patterns could be prepared through the LITI process. The patterned films were then used to fabricate electrophosphorescent devices, which show performance characteristics similar to those of spin-coated devices. The new host material is a good candidate to be used in polymer-based full-color electrophosphorescent light-emitting displays.

  • PDF