• 제목/요약/키워드: LIM Kinase

검색결과 231건 처리시간 0.028초

Nucleotide and Deduced Amino Acid Sequences of Rat Myosin Binding Protein H (MyBP-H)

  • Jung, Jae-Hoon;Oh, Ji-Hyun;Lee, Kyung-Lim
    • Archives of Pharmacal Research
    • /
    • 제21권6호
    • /
    • pp.712-717
    • /
    • 1998
  • The complete nucleotide sequence of the cDNA clone encoding rat skeletal muscle myosin- binding protein H (MyBP-H) was determined and amino acid sequence was deduced from the nucleotide sequence (GenBank accession number AF077338). The full-length cDNA of 1782 base pairs(bp) contains a single open reading frame of 1454 bp encoding a rat MyBP-H protein of the predicted molecular mass 52.7kDa and includes the common consensus 1CA__TG' protein binding motif. The cDNA sequence of rat MyBP-H show 92%, 84% and 41% homology with those of mouse, human and chicken, respectively. The protein contains tandem internal motifs array (-FN III-Ig C2-FN III- Ig C2-) in the C-terminal region which resembles to the immunoglobulin superfamily C2 and fibronectin type III motifs. The amino acid sequence of the C-terminal Ig C2 was highly conserved among MyBPs family and other thick filament binding proteins, suggesting that the C-terminal Ig C2 might play an important role in its function. All proteins belonging to MyBP-H member contains `RKPS` sequence which is assumed to be cAMP- and cGMP-dependent protein kinase A phosphorylation site. Computer analysis of the primary sequence of rat MyBP-H predicted 11 protein kinase C (PKC)phosphorylation site, 7 casein kinase II (CK2) phosphorylation site and 4N-myristoylation site.

  • PDF

Phosphorylation of a 66 kDa Protein, a Putative Protein Kinase C Substrate, is Related to Chondrogenesis of Chick Embryo Mesenchymes In Vitro

  • Lee, Sun-Ryung;Sonn, Jong-Kyung;Yoo, Byung-Je;Lim, Young-Bin;Kang, Shin-Sung
    • BMB Reports
    • /
    • 제31권4호
    • /
    • pp.350-354
    • /
    • 1998
  • To understand the role of protein kinase C (PKC) in the regulation of chondrogenesis, we examined proteins which are phosphorylated by PKC. Stage 23/24 chick embryo wing mesenchymes were micromass-cultured to induce chondrogenesis and cell extracts were phosphorylated in a condition that activates PKC. Several proteins including 63 and 66 kDa proteins were phosphorylated. The 66 kDa protein was phosphorylated only in the presence of phorbol 12-myristate 13-acetate (PMA) and phosphatidylserine CPS), and the phosphorylation was almost completely diminished by bisindolylmaleimide, a PKC inhibitor. In addition, partially purified PKC increased the phosphorylation of the 66 kDa protein. Treatment of cultures with lysophosphatidylcholine (LPC) promoted chondrogenesis and phosphorylation of 66 kDa protein, while PMA and thymeleatoxin inhibited both of the two events. Our results suggest that the 66 kDa protein is a putative substrate of PKC, and phosphorylation of the 66 kDa protein, probably by $PKC\alpha$ is required for chondrogenesis.

  • PDF

크레아틴의 방해영향을 줄인 크레아티닌 바이오센서 (A Creatinine Biosensor with Reduced Interference from Creatine)

  • 구현우;권기학;임은혜;신재호
    • 전기화학회지
    • /
    • 제15권4호
    • /
    • pp.249-255
    • /
    • 2012
  • 크레아티닌 센서의 생체시료 측정 시 가장 심각한 방해 작용을 발생하는 물질인 크레아틴을 효과적으로 제거하기 위하여 creatine kinase와 adenosine triphosphate를 사용한 두 번째 효소층을 도입하여 크레아틴에 대한 방해작용을 현저히 감소시켰다. 또한 평면형 소형 크레아티닌 센서를 개발하기 위해 탄소전극 표면에 Pt black(Pt-B)을 도입하여 표면적을 증가시킴으로써 전기화학적 감응 특성을 증가시킨 스크린 프린팅 방식의 Pt-B/C 전극을 제작하였다. 최적화된 소형 크레아티닌 센서를 흐름계 카트리지에 장착하여 미지시료를 측정한 결과 5% 이내의 오차 범위 내에서 우수한 측정 정확성과 재현성을 보임을 확인하였다.

Protective effect of ginsenoside Rh3 against anticancer drug-induced apoptosis in LLC-PK1 kidney cells

  • Lee, Hye Lim;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • 제41권2호
    • /
    • pp.227-231
    • /
    • 2017
  • Background: Ginsenosides are active components of Panax ginseng that exert various health benefits including kidney protection effect. The medicinal activity of ginsenosides can be enhanced by modulating their stereospecificity by heat processing. Ginsenosides Rk2 and Rh3 represent positional isomers of the double bond at C-20(21) or C-20(22). Methods: The present study investigated the kidney-protective effects of ginsenosides Rk2 and Rh3 against cisplatin, a platinum based anticancer drug, induced apoptotic damage in renal proximal LLC-PK1 cells. Results: As a result, ginsenoside Rh3 shows a stronger protective effect than that shown by Rk2. Cisplatin-induced elevated protein levels of phosphorylated c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), p38, and cleaved caspase-3 decreased after cotreatment with ginsenoside Rh3. The increase in the percentage of apoptotic LLC-PK1 cells induced by cisplatin treatment also significantly reduced after cotreatment with ginsenoside Rh3. Conclusion: These results demonstrate that inhibition of the JNK and ERK mitogen-activated protein kinase signaling cascade plays a critical role in mediating the renoprotective effect of ginsenoside Rh3.

Protein Kinase $C\alpha$ Is Involved in the Cell Condensation During Chondrogenesis in Vitro

  • Lim, Young-Bin;Kang, Shin-Sung;Lee, young-Sup;Sonn, Jong-Kyung
    • Animal cells and systems
    • /
    • 제4권4호
    • /
    • pp.361-366
    • /
    • 2000
  • In order to investigate the role of protein kinase C (PKC) in chondrogenic differentiation, we examined the localization of PKC isoforms in a limb bud micromass culture system. PKC$\alpha$ is specifically localized in the regions which would become cartilage nodules, while PKC$\lambda/l$ and $\zeta$ display widespread distribution in the whole culture. Distribution of PKC$\alpha$ change along with promotion or inhibition of chondrogenesis by lysophosphatidylcholine or phorbol 12-myristate 13-acetate. On the other hand, localization of PKC$\lambda/l$ or $\zeta$ a was not changed by the modulation of chondrogenesis. Peanut agglutinin binding protein which is associated with cell aggregation during chondrogenesis was present in the cell condensation regions and its expression in those regions was influenced by PKC activity. Expression of fibronectin and N-cadherin in the cell condensing area were also affected by modulation of PKC activity. These results suggest involvement of PKC$\alpha$ in the cell condensation, possibly through regulating expression of fibronectin and N-cadherin.

  • PDF

Anisomycin protects against sepsis by attenuating IκB kinase-dependent NF-κB activation and inflammatory gene expression

  • Park, Gyoung Lim;Park, Minkyung;Min, Jeong-Ki;Park, Young-Jun;Chung, Su Wol;Lee, Seon-Jin
    • BMB Reports
    • /
    • 제54권11호
    • /
    • pp.545-550
    • /
    • 2021
  • Anisomycin is known to inhibit eukaryotic protein synthesis and has been established as an antibiotic and anticancer drug. However, the molecular targets of anisomycin and its mechanism of action have not been explained in macrophages. Here, we demonstrated the anti-inflammatory effects of anisomycin both in vivo and in vitro. We found that anisomycin decreased the mortality rate of macrophages in cecal ligation and puncture (CLP)- and lipopolysaccharide (LPS)-induced acute sepsis. It also declined the gene expression of proinflammatory mediators such as inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin-1β as well as the nitric oxide and proinflammatory cytokines production in macrophages subjected to LPS-induced acute sepsis. Furthermore, anisomycin attenuated nuclear factor (NF)-κB activation in LPS-induced macrophages, which correlated with the inhibition of phosphorylation of NF-κB-inducing kinase and IκB kinase, phosphorylation and IκBα proteolytic degradation, and NF-κB p65 subunit nuclear translocation. These results suggest that anisomycin prevented acute inflammation by inhibiting NF-κB-related inflammatory gene expression and could be a potential therapeutic candidate for sepsis.

Update on Adjuvant Treatment in Resectable Non-Small Cell Lung Cancer and Potential Biomarkers Predicting Postoperative Relapse

  • Jeong Uk Lim
    • Tuberculosis and Respiratory Diseases
    • /
    • 제86권1호
    • /
    • pp.14-22
    • /
    • 2023
  • A significant proportion of patients with non-small cell lung cancer (NSCLC) is diagnosed in the early and resectable stage. Despite the use of platinum-based adjuvant chemotherapy, there was only a marginal increase in overall survival and a 15% decrease in relapse. With the advents of immunotherapy and epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), the landscape of adjuvant treatment in completely resectable NSCLC is changing. Postoperative radiotherapy can be beneficial to patients who underwent surgical resection in certain clinical settings. In addition, new biomarkers that predict efficacy of EGFR TKI and immunotherapy as adjuvant treatment are also necessary. In this review, recent updates in adjuvant treatment in resectable NSCLC were briefly explained.

흰쥐 말초 혈액 림프구의 분자량 44 kD 단백의 인산화 (Phosphorylation of 44-kilodalton Proteins in Peripheral T-lymphocyte of Rat)

  • 안영수;주일로;오도연;임승욱;박경선
    • 대한약리학회지
    • /
    • 제27권2호
    • /
    • pp.135-144
    • /
    • 1991
  • 흰쥐 말초혈액에서 얻은 T 림프구를 아드레날린성 ${\beta}-$수용체 효현제 및 concanavalin A(Con-A)로 자극해 다음과 같은 결과를 얻었다. 자극이 없는 상태에서의 주 인산화 단백은 분자량 44kD, 등전점 6.8의 단백이었으며 효현제로 자극시키면 분자량 44kD, 등전점 6.3의 단백이 새로이 인산화되어 나타났다. 이 분자량 44kD, 등전점 6.3의 단백은 forskolin에 의해 역시 인산화되며 A-kinase 억제제인 H-8을 전처치하면 인산화의 억제가 나타났다. 또한 Con-A로 자극시키면 44 kD/pI 6.3 단백의 인산화가 증가되었으며 이 인산화의 증가는 CaM kinase 억제제인 W-7 전처치에 의해 억제되었다. H-7은 분자량 44 kD, 등전점 6.8 단백의 인산화를 감소 시켰다. 이상의 결과로 분자량 44 kD 등전점 6.3의 단백은 A-kinase와 CaM kinase 모두에 의해 인산화 되는 기질단백으로서 tryptic peptide map상에서 44 kD/pI 6.8 단백과 44 kD/pI 6.3 단백은 서로 다른 단백임을 알 수 있었다.

  • PDF

Inhibitory Action of 1,3,5-Trihydroxybenzene on UVB-Induced NADPH Oxidase 4 through AMPK and JNK Signaling Pathways

  • Chaemoon Lim;Mei Jing Piao;Kyoung Ah Kang;Pincha Devage Sameera Madushan Fernando;Herath Mudiyanselage Udari Lakmini Herath;Dae Whan Kim;Joo Mi Yi;Yung Hyun Choi;Jin Won Hyun
    • Biomolecules & Therapeutics
    • /
    • 제32권4호
    • /
    • pp.499-507
    • /
    • 2024
  • Specific sensitivity of the skin to ultraviolet B (UVB) rays is one of the mechanisms responsible for widespread skin damage. This study tested whether 1,3,5-trihydroxybenzene (THB), a compound abundant in marine products, might inhibit UVB radiationinduced NADPH oxidase 4 (NOX4) in both human HaCaT keratinocytes and mouse dorsal skin and explore its cytoprotective mechanism. The mechanism of action was determined using western blotting, immunocytochemistry, NADP+/NADPH assay, reactive oxygen species (ROS) detection, and cell viability assay. THB attenuated UVB-induced NOX4 expression both in vitro and in vivo, and suppressed UVB-induced ROS generation via NADP+ production, resulting in increased cell viability with decreased apoptosis. THB also reduced the expression of UVB-induced phosphorylated AMP-activated protein kinase (AMPK) and phosphorylated c-Jun N-terminal kinase (JNK). THB suppressed UVB-induced NOX4 expression and ROS generation by inhibiting AMPK and JNK signaling pathways, thereby inhibiting cellular damage. These results showed that THB could be developed as a UV protectant.

Phloroglucinol Enhances Anagen Signaling and Alleviates H2O2-Induced Oxidative Stress in Human Dermal Papilla Cells

  • Seokmuk Park;Ye Jin Lim;Hee Su Kim;Hee-Jae Shin;Ji-Seon Kim;Jae Nam Lee;Jae Ho Lee;Seunghee Bae
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권4호
    • /
    • pp.812-827
    • /
    • 2024
  • Phloroglucinol (PG) is one of the abundant isomeric benzenetriols in brown algae. Due to its polyphenolic structure, PG exhibits various biological activities. However, the impact of PG on anagen signaling and oxidative stress in human dermal papilla cells (HDPCs) is unknown. In this study, we investigated the therapeutic potential of PG for improving hair loss. A non-cytotoxic concentration of PG increased anagen-inductive genes and transcriptional activities of β-Catenin. Since several anagen-inductive genes are regulated by β-Catenin, further experiments were performed to elucidate the molecular mechanism by which PG upregulates anagen signaling. Various biochemical analyses revealed that PG upregulated β-Catenin signaling without affecting the expression of Wnt. In particular, PG elevated the phosphorylation of protein kinase B (AKT), leading to an increase in the inhibitory phosphorylation of glycogen synthase kinase 3 beta (GSK3β) at serine 9. Treatment with the selective phosphoinositide 3-kinase/AKT inhibitor, LY294002, restored the increased AKT/GSK3β/β-Catenin signaling and anagen-inductive proteins induced by PG. Moreover, conditioned medium from PG-treated HDPCs promoted the proliferation and migration of human epidermal keratinocytes via the AKT signaling pathway. Subsequently, we assessed the antioxidant activities of PG. PG ameliorated the elevated oxidative stress markers and improved the decreased anagen signaling in hydrogen peroxide (H2O2)-induced HDPCs. The senescence-associated β-galactosidase staining assay also demonstrated that the antioxidant abilities of PG effectively mitigated H2O2-induced senescence. Overall, these results indicate that PG potentially enhances anagen signaling and improves oxidative stress-induced cellular damage in HDPCs. Therefore, PG can be employed as a novel therapeutic component to ameliorate hair loss symptoms.