• Title/Summary/Keyword: LILW disposal site

Search Result 14, Processing Time 0.021 seconds

Site Monitoring and investigation plan for LILW disposal (방사성폐기물 처분장 부지감시 계획)

  • Baek, Seung-Jong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.369-385
    • /
    • 2008
  • The purpose of site monitoring and investigation is to offer the basic data for performance assessment and design of low- and intermediate-level radioactive waste(LILW) disposal facility by monitoring variations of main site properties continually in the stage of pre-operation, operation and post-closure. Main contents of site monitoring are as follows. In the stage of pre-operation, suitability evaluation for disposal facility and monitoring for constructing and operating disposal facility are performed. In the operation period, monitoring is performed including surroundings to research the influence to environment with operating disposal facility and operate safely and efficiently. In the post-closure period, monitoring about major site properties is performed to prevent the effect of radioactive waste from disposal facility and to secure long-term safety.

  • PDF

Deployment of Radioactive Waste Disposal Facility with the Introduction of Nuclear Power Plants (NPP) in Kenya

  • Shadrack, A.;Kim, C.L.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.37-47
    • /
    • 2013
  • This paper describes basic plans for the development of a radioactive waste disposal facility with the introduction of Nuclear Power Plants (NPPs) for Kenya. The specific objective of this study was to estimate the total projected waste volumes of low- and intermediate-level radioactive waste (LILW) expected to be generated from the Kenyan nuclear power programme. The facility is expected to accommodate LILW to be generated from operation and decommissioning of nuclear power plants for a period of 50 years. An on-site storage capacity of 700 $m^3$ at nuclear power plant sites and a final disposal repository facility of more than 7,000 $m^3$ capacity were derived by considering Korean nuclear power programme radioactive waste generation data, including Kori, Hanbit, and APR 1400 nuclear reactor data. The repository program is best suited to be introduced roughly 10 years after reactor operation. This study is important as an initial implementation of a national LILW disposal program for Kenya and other newcomer countries interested in nuclear power technology.

A Study About Radionuclides Migration Behavior in Terms of Solubility at Gyeongju Low- and Intermediate-Level Radioactive Waste (LILW) Repository

  • Park, Sang June;Byon, Jihyang;Lee, Jun-Yeop;Ahn, Seokyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.113-121
    • /
    • 2021
  • A safety assessment of radioactive waste repositories is a mandatory requirement process because there are possible radiological hazards owing to radionuclide migration from radioactive waste to the biosphere. For a reliable safety assessment, it is important to establish a parameter database that reflects the site-specific characteristics of the disposal facility and repository site. From this perspective, solubility, a major geochemical parameter, has been chosen as an important parameter for modeling the migration behavior of radionuclides. The solubilities were derived for Am, Ni, Tc, and U, which were major radionuclides in this study, and on-site groundwater data reflecting the operational conditions of the Gyeongju low and intermediate level radioactive waste (LILW) repository were applied to reflect the site-specific characteristics. The radiation dose was derived by applying the solubility and radionuclide inventory data to the RESRAD-OFFSITE code, and sensitivity analysis of the dose according to the solubility variation was performed. As a result, owing to the low amount of radionuclide inventory, the dose variation was insignificant. The derived solubility can be used as the main input data for the safety assessment of the Gyeongju LILW repository in the future.

Analysis of the statistical properties for the background fractures in the LILW disposal site of Korea (중.저준위 방사성폐기물 처분 부지 내 배경 단열의 통계적 특성 분석)

  • Ji, Sung-Hoon;Park, Kyung-Woo;Kim, Kyoung-Su;Kim, Chun-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.257-263
    • /
    • 2008
  • We analyzed the statistical properties for the conductive background fractures in the Low and Intermediate Level Waste(LILW) disposal site to conceptualize of its groundwater flow system. The background fractures were classified to fracture sets based on their trends and plunges that were obtained from the borehole logging data, and then the fracture transmissivity distribution was inferred from the fixed interval hydraulic test results. The fracture size distribution of each fracture set was estimated using the fracture density and fracture mapping data. To verify the analyzed results, we compared observed field data to simulated one from the DFN model that was constructed with the analyzed statistical properties of the background fractures, and they showed a good agreement.

  • PDF

A Safety Assessment for the Wolsong LILW Disposal Center: As a part of safety case for the first stage disposal (월성원자력환경관리센터의 폐쇄후 처분안전성평가: 1단계 인허가 적용사례를 중심으로)

  • Park, Joo-Wan;Yoon, Jeong-Hyun;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.329-346
    • /
    • 2008
  • Post-closure safety assessment for the Wolsong Low- and Intermediate-level radioactive waste Disposal Center is described. Based on assessment context, closure concept and ground water flow characteristics of the disposal site, brief descriptions are included on the assessment scenarios, models, input parameters and tools. Radionuclide transport modeling in the near-field and far-field, gas generation and transport modeling, human intrusion and biosphere transport are also described briefly. Assessment results for each scenarios are shown to meet the performance criteria of regulatory body. Further and continuous efforts to improve the safety of disposal facility will be made during the construction and operational period.

  • PDF

WOLSONG LOW- AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE DISPOSAL CENTER: PROGRESS AND CHALLENGES

  • Park, Jin-Beak;Jung, Hae-Ryong;Lee, Eun-Young;Kim, Chang-Lak;Kim, Geon-Young;Kim, Kyung-Su;Koh, Yong-Kwon;Park, Kyung-Woo;Cheong, Jae-Hak;Jeong, Chan-Woo;Choi, Jong-Soo;Kim, Kyung-Deok
    • Nuclear Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.477-492
    • /
    • 2009
  • In this paper, we discuss the experiences during the preparation of the Wolsong Low- and Intermediate-Level Radioactive Waste Disposal Center. These experiences have importance as a first implementation for the national LILW disposal facility in the Republic of Korea. As for the progress, it relates to the area of selected disposal site, the disposal site characteristics, waste characteristics of the disposal facility, safety assessment, and licensing process. During these experiences, we also discuss the necessity for new organization and change for a radioactive waste management system. Further effort for the safe management of radioactive waste needs to be pursued.

A natural analog study on the cover-layer performance for near-surface LILW disposal by considering the tomb of historical age (역사시대 고분을 이용한 중저준위 방사성폐기물의 천층처분 덮개성능 자연유사연구)

  • Park Jin-Beak;Park Joo Wan;Kim Chang-Lak;Yang Si Eun;Lee Sun Bok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.279-291
    • /
    • 2005
  • To support the design concept and the performance assessment of the cover system for low- and intermediate-level radioactive waste(LILW) disposal facility, a pioneering study is conducted for the tomb of historical age. Research status of the art are investigated and the characteristics of tomb cover are summarized based on the preservation status of historical remains. On-site soil samples are prepared and their unsaturated hydraulic conductivities are measured by an one-step outflow method. Visiting the excavation site of historical tomb and communication with Korean archeological society are required for the further understanding and for the extension to the radioactive waste disposal research.

  • PDF

Numerical simulation of groundwater flow in LILW Repository site:II. Input parameters for Safety Assessment (중.저준위 방사성폐기물 처분 부지의 지하수 유동에 대한 수치 모사: 2. 처분 안전성 평가 인자)

  • Park, Kyung-Woo;Ji, Sung-Hoon;Koh, Yong-Kwon;Kim, Geon-Young;Kim, Jin-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.283-296
    • /
    • 2008
  • The numerical simulations for groundwater flow were carried out to support the input parameters for safety assessment in LILW repository site. As the input parameters for safety assessment, the groundwater flux into the underground facilities during construction, flow rate through the disposal silo after closure of disposal silo and flow pathway from the disposal silo to discharge area were analyzed using the 10 cases groundwater flow simulations. From the total 10 numerical simulation results, the statistics of estimated output were similar to among 10 cases. In some cases, the analyzed input parameters were strongly governed by locally existed high permeable fracture zone at radioactive waste disposed depth. Indeed, numerical simulation for well scenario as a human intrusion scenario was carried out using the hydraulically severe case model. Using the results of well scenario, the input parameters for safety assessment were also obtained through the numerical simulation.

  • PDF

Numerical simulation of groundwater flow in LILW Repository site:I. Groundwater flow modeling (중.저준위 방사성폐기물 처분 부지의 지하수 유동에 대한 수치 모사: 1. 지하수 유동 모델링)

  • Park, Kyung-Woo;Ji, Sung-Hoon;Kim, Chun-Soo;Kim, Kyung-Su;Kim, Ji-Yeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.265-282
    • /
    • 2008
  • Based on the site characterization works in a low and intermediate level waste(LILW) repository site, the numerical simulations for groundwater flow were carried out in order to understand the groundwater flow system of repository site. To accomplish the groundwater flow modeling in the repository site, the discrete fracture network(DFN) model was constructed using the characteristics of fracture zones and background fractures. At result, the total 10 different hydraulic conductivity(K) fields were obtained from DFN model stochastically and K distributions of constructed mesh were inputted into the 10 cases of groundwater flow simulations in FEFLOW. From the total 10 numerical simulation results, the simulated groundwater levels were strongly governed by topography and the groundwater fluxes were governed by locally existed high permeable fracture zones in repository depth. Especially, the groundwater table was predicted to have several tens meters below the groundwater table compared with the undisturbed condition around disposal silo after construction of underground facilities. After closure of disposal facilities, the groundwater level would be almost recovered within 1 year and have a tendency to keep a steady state of groundwater level in 2 year.

  • PDF