• Title/Summary/Keyword: LII 법

Search Result 22, Processing Time 0.016 seconds

The Effects of Periodic Fuel Supply on the Flame Stability and Soot Formation (주기적 연료 공급이 비애혼합 화염 특성에 미치는 영향에 관한 연구)

  • Lee, Sang-Hyeop;Jeon, Dae-Hyeon;Lee, Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.94-100
    • /
    • 2002
  • The effects of periodic fuel supply on the nonpremixed flame stability and soot formation were experimentally studied. A solenoid valve was used to control the period of fuel supply. The laser induced incandescence technique was used to visualize cool: volume fraction profile. The flame base shape was changed significantly by the fuel supply period and partially by the fuel flowrates. The portion of bluish flame near the flame base became larger as the period increased. When the period was long, two flames coexisted within one period. It seemed that the characteristic of flame stability were repeated with 4.68m change of fuel supply line length. The soot mass measurements and soot volume fraction measurements revealed that the maximum suppression of soot by the perioic fuel supply was approximately 75% , which occurred when the occurred when the fuel supply period was relatively long.

The Characteristics of Exhausted Soot Particles from a Common-Rail Direct Injection Diesel Engine by TIRE-LII (커먼레일 직접분사식 디젤엔진에서 시분해 레이저 유도 백열법을 이용한 매연입자의 배출 특성)

  • Kim, Gyu-Bo;Han, Hwi-Young;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.78-85
    • /
    • 2007
  • Recently, diesel vehicles have been increased and their emission standards have been getting strict. The emission of diesel vehicles contains numerous dangerous compounds, especially particulate matters cause a serious environmental pollutant and affect to human health seriously. Thousands of studies have already reported that particulate matters are associated with respiratory and cardiovascular diseases, and death. Due to these, it is necessary to measure the soot concentration and soot particle size in laboratory flames or practical engines to recognize the soot formation, and develop the control strategies for soot emission. In this study, the characteristics of exhausted soot particle size and volume fraction from 2.0L CRDI diesel engine have been investigated as varying engine speed and load. Laser induced incandescence has been used to measure soot concentration. Time-resolved laser induced incandescence has been used to determine soot particle size in the engine. The soot volume fraction is increased as increasing engine load but soot volume fraction is decreased as increasing engine speed. The primary particle size is distributed about $35nm{\sim}60nm$ at each experimental conditions.