• Title/Summary/Keyword: LII 법

Search Result 22, Processing Time 0.026 seconds

The Calibration Method of Time Resolved Laser Induced Incandescence Using Carbon Black Particles for the Soot Measurement at Exhaust Tail Pipe in Engine (엔진 배기단 적용을 위한 Time Resolved Laser Induced Icandescence (TIRE-LII) 신호의 보정 : 카본 입자 이용)

  • Oh Kwang Chul;Kim Deok Jin;Lee Chun Hwan;Lee Chun Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1335-1343
    • /
    • 2005
  • The calibration technique of Time Resolved Laser Induced Incandescence was investigated both experimentally and numerically by using standard-sized carbon black particles for the instantaneous soot measurement at exhaust tail pipe in engine. The carbon black particles (19nm, 25nm, 45nm and 58nm) used in this study are similar, though not identical, to soot particle generated from flame not only in morphology but also in micro-structure. The amount of soot loading in flow was controled by a diluted gas (nitrogen) and was measured by the gravimetric method at exhaust pipe in calibrator. The successful calibrations of primary particle size and soot mass fraction were carried out at the range from 19nm to 58nm and from $0.25mg/m^3$ to $37mg/m^3$ respectively. And based on these results the numerical simulation of LII signal was tuned and the effect of an exhaust temperature variation on the decay rate of LII signal was corrected.

Tomographic Reconstruction of Asymmetric Soot Structure from Multi-angular Scanning (다각 주사법을 이용한 비대칭 매연분포의 재구성)

  • Lee, S.M.;Hwang, J.Y.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.55-61
    • /
    • 1999
  • A convolution algorithm combined with Fourier transformation is applied to the tomographic reconstruction of the asymmetric soot structure to identify the local soot volume fraction distribution. The line of sight integrated data from light extinction measurement with multi-angular scanning form basic information for the deconvolution. Multi-peak following interpolation technique is applied to obtain the effect of increasing number of scanning angles. Measurement of LII signal for the same flame shows the validity of this reconstruction technigue.

  • PDF

Soot Primary Particle Size Measurement in a Ethylene Diffusion Flame Using Time-Resolved Laser-Induced Incandescence (2차원 시분해 레이저 유도 백열법을 이용한 에틸렌 확산 화염에서의 매연 입자 크기 측정)

  • Shon, Moo-Kang;Moon, Gun-Feel;Kim, Gyu-Bo;Lee, Jong-Ho;Jeong, Dong-Soo;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1140-1145
    • /
    • 2004
  • Laser-induced incandescence (LII) is introduced as a valuable tool for the characterization of nanoparticles in flame environments. This technique is based on the heating of the particles by a short laser pulse and the subsequent detection of the thermal radiation. It has been applied successfully for the investigation of soot in different fields of application. The evaluation of the temporal decay of the laser-induced incandescence (LII) signal from soot particles is introduced as a technique to obtain two-dimensional distributions of particle sizes and is applied to a laminar diffusion flame. This novel approach to soot sizing exhibits several theoretical and technical advantages compared with the established combination of elastic scattering and LII, especially as it yields absolute sizes of primary particles without requiring calibration. With this technique a spatially resolved 2-D measurement of soot primary particle sizes is feasible in a combination process form the ratio of emission signals obtained at two delay times after a laser pulse, as the cooling behavior is characteristic of particle size.

  • PDF

A Study on the Soot Measurement in Laminar and Turbulent Diffusion Flame Using the Laser Diagnostics (광계측 기법을 이용한 층류 및 난류 확산 화염에서의 매연 측정에 관한 연구)

  • Lee, Jun-Yong;Han, Yong-Taik;Lim, Jun-Won;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3073-3078
    • /
    • 2008
  • In this study to find out the amount of soot, LII method, which utilizes a laser, was used in laminar diffusion flame and based upon the temperature and soot measured from the turbulent Diesel diffusion flame in the constant-volume chamber using the two-color method. Through these experiments, we could know that the LII signal is generally proportional to the soot amount in a laminar diffusion flame. And we could acquire the temperature and soot using the two-color method in a turbulent Diesel diffusion flame effectively. In addition to, this experiment revealed that the KL factor was high on parts of the chamber where the temperature dropped. On the other hand, the KL factor was low where the temperature increased rapidly. Also, it was possible to measure the highest temperature of a turbulent Diesel diffusion flame is approximately 2300K.

  • PDF

Characteristics of PAH and Soot Formation for Various Fuels in Coflow Diffusion Flame (동축류 확산화염에서 다양한 연료에 따른 PAH 및 매연의 생성특성)

  • Yoon S. S.;Ahn H. N.;Lee S. M.;Chung S. H.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.107-110
    • /
    • 2003
  • Characteristics of PAH and soot formation in coflow diffusion flames of methane, methane, propane, and ethylene have been experimentally studied to investigate the temperature and fuel structure effect on soot formation. PAH and soot images were acquired by applying PAH LIF and LII techniques, respectively and temperature was measured using R-type thermocouple. Direct photographs of soot particles have also been taken by transmission electron microscopy (TEM) through a thermophoretic sampling. Comparison of PAH and soot formation between the aliphatic fuels has shown the importance of fuel structure effect in diffusion flames.

  • PDF

A Numerical Study of Heat and Mass Transfer Model of LII for Nanoscale Soot Particles (나노크기의 매연입자에 대한 LII의 열-물질 전달 모델에 관한 수치적 연구)

  • Kim, Gyu-Bo;Shim, Jae-Young;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.596-603
    • /
    • 2007
  • As increasing interest for soot emission. etc in combustion systems, various studies are being carried out for the reduction and measurement techniques of soot. Especially, laser induced incandescence is the useful measurement technique which has distinguished spatial and temporal resolution for primary particle size, volume fraction and aggregated particle size etc. Time resolved laser induced incandescence is the technique for measuring primary particle size that is decided to solve the signal decay rate which is related to the cooling behavior of heated particle by pulsed laser. The cooling behavior of heated particle is able to represent the heat and mass transfer model which are involved constants of soot property for surround gas temperature on the our previous work. In this study, it is applied to the time-dependence thermodynamic properties for soot temperature instead of constants of soot property for surround gas temperature and compared two different model results.

Study on Soot Primary Particle Size Measurement in Ethylene Diffusion Flame by Time-Resolved Laser-Induced Incandescence (시분해 레이저 유도 백열법을 이용한 에틸렌 확산 화염에서의 매연 일차입자크기 측정에 관한 연구)

  • Kim Gyu-Bo;Cho Seung-Wan;Lee Jong-Ho;Jeong Dong-Soo;Chang Young-June;Jeon Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.973-981
    • /
    • 2006
  • Recently there is an increasing interest in particulate matter emission because of new emission regulations, health awareness and environmental problems. It requires to improve particulate measurement techniques as well as to reduce soot emissions from combustion systems. As mentioned above, it is demanded that reduction techniques together with measurement techniques of exhausted particulate matters in combustion systems such as vehicles. However, measurement techniques of particulate matters should be prior to reduction techniques of that because it is able to know an increase and a decrease of exhausted particulate matters when measured particulate matters. Therefore, in this study, we report the measurement of soot primary-particle size using time-resolved laser induced incandescence (TIRE-LII) technique in laminar ethylene diffusion flame. As an optical method, laser induced incandescence is one of well known methods to get information for spatial and temporal soot volume fraction and soot primary particle size. Furthermore, TIRE-LII is able to measure soot primary particle size that is decided to solve the decay ate of signal S $(t_1)$ and S $(t_2)$ at two detection time. In laminar ethylene diffusion flame, visual flame height is 40 mm from burner tip and measurement points are height of 15, 20, 27.5, 30 mm above burner tip along radial direction. As increasing the height of the flame from burne. tip, primary particle size was increased to HAB(Height Above Burner tip)=20mm, and then decreased from HAB=27.5 mm to 30 mm. This results show the growth and oxidation processes for soot particles formed by combustion.

Soot and PAH Formation in Counterflow Diffusion Flames of Ethylene-Propane (에틸렌/프로판 대향류 확산화염에서 PAH 와 매연의 생성특성)

  • Yoon, Seung-Suk;Lee, Sang-Min;Hwang, Jun-Young;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.817-822
    • /
    • 2002
  • Sooting characteristics of counterflow ethylene/propane mixture flames have been experimentally studied to investigate the fuel structure effect on PHM and soot formation. Laser-induced incandescene and laser-induced fluorescene techniques were employed to measure soot volume fraction and polycyclic aromatic hydrocarbon (PAH) concentration, respectively. Importance of $C_{3-}$species on PAH growth as well as the H-abstraction-C$_2$ $H_2$addition (HACA) mechanism has been emphasized, considering that PAH growth rate is greater for with mixed fuel than fer pure fuel flames. It was also confirmed that HACA pathways are the dominant soot growth mechanism. A new PAH growth model including both $C_{2-}$ and $C_{3-}$growth mechanisms is proposed based on the experimental results.

Development of Oxygen Combustion Burner for Industrial Gasification and Smelting Furnace (산업용 가스화 용융로를 위한 산소 버너의 개발)

  • Bae, Soo-Ho;Lee, Uen-Do;Shin, Hyun-Dong;Kim, Soung-Hyoun;Gu, Jae-Hoi;Yoo, Young-Don
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.170-178
    • /
    • 2005
  • Multi-hole type oxygen combustion burner was developed for industrial gasification and smelting furnace. We investigated characteristics of flame, radiation transfer, and soot emission in the convectional oxygen burner with respect to the feeding condition of fuel and oxygen. Regarding the results of the conventional burner, we designed new burners which have larger fuel consumption rate and radiation heat transfer. We changed the size and hole number and shape of the exit plane of the burner. In addition, the performance of the burner was tested with respect to the feeding condition of the fuel and air: Normal Diffusion flame(NDF) and Inverse Diffusion Flame(IDF). We investigated the flame configuration, radiation heat transfer, and soot formation by using a CCD camera, heat flux meter, and Laser Induced Incadescence(LII), respectively. The stable operating condition was obtained by the flame configuration and the flame of the burner which has dented exit plane was more stable in whole operating conditions. The characteristics of radiative heat transfer were sensitive to the feeding condition of reactants and the flame of 75% primary oxygen and 25% secondary oxygen of the IDF case shows maximum radiation heat transfer. The soot volume fraction of the flame was measured in the axial direction of the flame and the amount of soot volume fraction is proportion to the radiation heat transfer. As a result, we can get the optimal operating condition of the newly designed burner which enhances the characteristics of flame stabilization and radiation heat transfer.

  • PDF

A Study on Effect of n-heptane Mixing on PAH and Soot Formation in Counterflow Ethylene Diffusion Flames (대향류 에틸렌 확산화염내 PAH 및 매연의 생성에 미치는 n-헵탄 혼합의 영향에 관한 연구)

  • Choi, Jae-Hyuk;Han, Won-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • In order to investigate the effect of n-heptane mixing on PAH and soot formation, small amount of n-heptane has been mixed in counterflow ethylene diffusion flame. Laser-induced incandescene and laser-induced fluorescene techniques were employed to measure soot volume fraction and polycyclic aromatic hydrocarbon(PAH) concentration, respectively. Results showed that the mixing of n-heptane in ethylene diffusion flame produces more PAHs and soot than those of pure ethylene flame. However, signals of LIF for 20% n-heptane mixture flame were lower than that of pure ethylene flame. It can be considered that the enhancement of PAH and soot formation by the n-heptane mixing of ethylene can be explained by methyl($CH_3$) radical in the low temperature region. And it can be found that reaction rate of H radical for 10% n-heptane plays a crucial role for benzene formation.