• 제목/요약/키워드: LIEF

검색결과 20건 처리시간 0.026초

LIEF법을 이용한 증발 디젤 분무의 특성에 관한 연구 (A Study on the Characteristics of an Evaporating Diesel Spary Using LIEF Technique)

  • 김용래;김만식;조훈;민경덕
    • 한국분무공학회지
    • /
    • 제7권3호
    • /
    • pp.18-23
    • /
    • 2002
  • An evaporating diesel spray of a common rail lnjector was visualized by LIEF technique. This technique makes it possible to separate the vapor and liquid phase images. The experiment was conducted in a constant volume vessel to make a high temperature and high pressure condition. Three images(vapor and liquid phase images from LIEF and a liquid phase image from Mie scattering) were taken simultaneously in one spray event. The major experimental parameters are the injection pressure and the ambient gas pressure. Also, a relative SMD distribution in a liquid phase was obtained by the ratio of the intensities of the fluorescence and the Mie scattering. The results show that the injection pressure and the ambient gas pressure have a close relation with the spray development and air-fuel muting process.

  • PDF

직접 분사식 연료 분무에서의 기.액상 분리 계측에 관한 연구 (An Experimental Study on the Analysis of Liquid/Vapor Phase in GDI Spray)

  • 장석형;김정호;박경석;진성호;김경수
    • 한국분무공학회지
    • /
    • 제5권4호
    • /
    • pp.57-65
    • /
    • 2000
  • For this research an extension of the LIF technique that the LIEF(Laser Induced Exciplex Fluorescence) technique has been used LIEF technique is the unique method to allows the visualization of fuel vapor phase and liquid phase individually by capturing each signals of them. In this work performed that the basic procedure for advanced LIEF technique using TEA and benzene as dopants md high power KrF excimer laser to excite the dopants. Iso-octane is used as the fuel because it does not absorb light at the laser wavelength. The boiling point of benzene and TEA are $81^{\circ}C\;and89^{\circ}C$, respectively, in comparison to $99^{\circ}C$ for iso-octane. It is observed that the behavior and distribution of high pressed fuel injection from various test condition. The injection pressure is set as 3MPa. and 5MPa. And the ambient pressure of test chamber is atmospheric pressure and 1MPa, the ambient temperature of chamber is room temperature, $300^{\circ}C\;and\;500^{\circ}C$ to imitate the condition of GDI engine cylinder.

  • PDF

LIEE와 Mie 산란 방법을 이용한 직분식 가솔린 엔진의 스월 및 슬릿 인젝터의 분무 특성 (The Spray Characteristics of Swirl and Slit Injector to DISI Engine Using LIEF and Mie-scattering Method)

  • 이기형;황규민;이창희
    • 대한기계학회논문집B
    • /
    • 제29권3호
    • /
    • pp.356-367
    • /
    • 2005
  • The spray characteristics of DISI injector have a great role in gasoline engine efficiency and emission. Thus, many researchers have studied to investigate the spray characteristics of swirl and slit injectors that are used in a DISI engine. In this study, we tried to provide spray parameters, which affect on the spray characteristics such as injection pressure, ambient pressure and ambient temperature. In addition, we calculated $t_{b}\;and\;t_{c}$ to investigate the break up mechanism of test injectors and obtained $C_{v}$ to evaluate the spray characteristics. As the ambient pressure increases in case of slit injector, $C_{v}$ decreases. The laser-induced exciplex fluorescence (LIEF) technique, which is based on spectrally resolved two-color fluorescent emissions, has applied to measure the liquid and vapor phases for on evaporating spray simultaneously. The TMPD/naphthalene proposed by Melton is used as a dophant to detect exciplex signal. The temporal and spatial distribution of liquid and vapor phases during the mixture formation process was measured by this technique. In the LIEF technique, the vapor phase is detected by the monomer fluorescence while the liquid phase is tracked by the exciplex fluorescence. From this experiment, we found that the spray area of the vapor phase is increased with elapsed time after injection and the area of liquid is decreased when the ambient pressure is 0.1MPa. However, the area tends to increase until the end of injection when the ambient pressure is 1.0MPa.

직접분사식 가솔린 엔진에서 분사시기와 흡입유동이 실린더 내 연료의 거동에 미치는 영향 (Effects of Injection Timing and Intake Flow on In-Cylinder Fuel Behavior in a GDI Engine)

  • 이정훈;강정중;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.7-13
    • /
    • 2003
  • The purpose of this study is to investigate the effect of the in-cylinder flows and different injection timings on fuel behavior in the cylinder of a GDI engine. Three different flows types induced by using masked port, unmasked port, and port deactivation were tumble, swirl&tumble, and high swirl respectively. LIEF technique was applied to investigate the mixture formation and fuel distribution at ignition time in the transparent engine with optical access through the piston top and upper part of cylinder liner. Injection timings of 180,90, and 60 degrees before TDC were examined. It was found that tumble flow was more effective on the homogeneous mixture formation than other flow and swirl flow transported more fuel vapor to the exhaust side at early injection mode, and swirl and swirl & tumble flow made fuel vapor concentrate around the cylinder center at late injection mode.

Spray Structures and Vaporizing Characteristics of a GDI Fuel Spray

  • Park, Dong-Seok;Park, Gyung-Min;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.999-1008
    • /
    • 2002
  • The spray structures and distribution characteristics of liquid and vapor phases in non-evaporating and evaporating Gasoline Direct Injection (GDI) fuel sprays were investigated using Laser Induced Exciplex Fluorescence (LIEF) technique. Dopants were 2% fluorobenzene and 9% DEMA (diethyl-methyl-amine) in 89% solution of hexane by volume. In order to study internal structure of the spray, droplet size and velocity under non-evaporating condition were measured by Phase Doppler Anemometry (PDA). Liquid and vapor phases were visualized at different moments after the start of injection. Experimental results showed that the spray could be divided into two regions by the fluorescence intensity of liquid phase: cone and mixing regions. Moreover, vortex flow of vapor phase was found in the mixing region. About 5㎛ diameter droplets were mostly distributed in the vortex flow region. Higher concentration of vapor phase due to vaporization of these droplets was distributed in this region. Particularly, higher concentration of vapor phase and lower one were balanced within the measurement area at 2ms after the start of injection.

EFFECT OF THE SHAPE OF IMPINGEMENT PLATE ON THE VAPORIZATION AND FORMATION OF FUEL MIXTURE IN IMPINGING SPRAY

  • Kang, J.J.;Kim, D.W.;Choi, G.M.;Kim, D.J.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.585-593
    • /
    • 2006
  • The effect of the shape of the side wall on vaporization and fuel mixture were investigated for the impinging spray of a direct injection(DI) gasoline engine under a variety of conditions using the LIEF technique. The characteristics of the impinging spray were investigated under various configurations of piston cavities. To simulate the effect of piston cavity configurations and injection timing in an actual DI gasoline engine, the parameters were horizontal distance from the spray axis to side wall and vertical distance from nozzle tip to impingement plate. Prior to investigating the side wall effect, experiments on free and impinging sprays for flat plates were conducted and these results were compared with those of the side wall impinging spray. For each condition, the impingement plate was located at three different vertical distances(Z=46.7, 58.4, and 70 mm) below the injector tip and the rectangular side wall was installed at three different radial distances(R=15, 20, and 25 mm) from the spray axis. Radial propagation velocity from spray axis along impinging plate became higher with increasing ambient temperature. When the ambient pressure was increased, propagation speed reduced. High ambient pressures tended to prevent the impinging spray from the propagating radially and kept the fuel concentration higher near the spray axis. Regardless of ambient pressure and temperature fully developed vortices were generated near the side wall with nearly identical distributions, however there were discrepancies in the early development process. A relationship between the impingement distance(Z) and the distance from the side wall to the spray axis(R) was demonstrated in this study when R=20 and 25 mm and Z=46.7 and 58.4 mm. Fuel recirculation was achieved by adequate side wall distance. Fuel mixture stratification, an adequate piston cavity with a shorter impingement distance from the injector tip to the piston head should be required in the central direct injection system.

벽면 형상에 따른 중공 원추형 분무의 벽 충돌 과정 모델링 (Modeling of Wall Impingement Process of Hollow-Cone Fuel Spray according to Wall Geometry)

  • 심영삼;최경민;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3467-3472
    • /
    • 2007
  • The effects of the wall geometry on the spray-wall impingement process of a hollow-cone fuel spray emerging from a high-pressure swirl injector of the Gasoline Direct Injection (GDI) engine were investigated by means of a numerical method. The ized Instability Sheet Atomization (LISA) & Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model for spray atomization process and the Gosman model were applied to model the atomization and wall impingement process of the spray. The calculation results of spray characteristics, such as a spray development process and a radial distance after wall impingement, compared with the experimental ones by the Laser Induced Exciplex Fluorescence (LIEF) technique. It was found that the radial distance of the cavity angle of 90$^{circ]$ after wall impingement was the shortest and the ring shaped vortex was generated near the wall after spray-wall impingement process.

  • PDF