• Title/Summary/Keyword: LID

Search Result 543, Processing Time 0.131 seconds

Assessment of Water Circulation and Hydro-characteristics with LID techniques in urbanized areas (도시지역에 적용된 LID 기법의 강우시 수문특성 및 물순환 평가)

  • Choi, Hyeseon;Hong, Jungsun;Jeon, Minsu;Geronimo, Franz Kevin;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.191-198
    • /
    • 2019
  • High impervious surfaces increase the surface runoff during rainfall and reduces the underground infiltration thereby leading to water cycle distortion. The distortion of water cycle causes various urban environmental problems such as urban flooding, drought, water pollutant due to non-point pollution runoff, and water ecosystem damage. Climate change intensified seasonal biases in urban rainfall and affected urban microclimate, thereby increasing the intensity and frequency of urban floods and droughts. Low impact development(LID) technology has been applied to various purposes as a technique to reduce urban environmental problems caused by water by restoring the natural water cycle in the city. This study evaluated the contribution of hydrologic characteristics and water cycle recovery after LID application using long-term monitoring results of various LID technology applied in urban areas. Based on the results, the high retention and infiltration rate of the LID facility was found to contribute significantly to peak flow reduction and runoff delay during rainfall. The average runoff reduction effect was more than 60% at the LID facility. The surface area of the LID facility area ratio(SA/CA) was evaluated as an important factor affecting peak flow reduction and runoff delay effect.

Study on Analysis of the Proper Ratio and the Effects of Low Impact Development Application to Sewage Treatment District (하수처리구역 내 LID 적용에 대한 적정비율 및 효과분석 연구)

  • Shin, Hyun Suk;Kim, Mi Eun;Kim, Jae Moon;Jang, Jong Kyung
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1193-1207
    • /
    • 2013
  • Increase of impervious area caused by overdevelopment has led to increase of runoff and then the problem of flooding and NPS were brought up. In addition, as decrease of base flow made groundwater level to decline, a stream that dries up is issued. low impact development (LID) method which is possible to mimic hydrological water cycle, minimize the effect of development, and improve water cycle structure is proposed as an alternative. As introduction of LID in domestic increases, the study on small watershed is in process mainly. Also, analysis of property of hydrological runoff and load on midsize watershed, like sewage treatment district, is required, the study on it is still insufficient. So, area applying LID practices from watershed of Dongrae stream is pinpointed and made the ratio and then expand it to watershed of Oncheon stream. Among low impact development practices, Green Roof, Porous Pavement, and Bio- retention are selected for the application considering domestic situations and simulated with SWMM-LID model of each watershed and improvement of water cycle and reduction of non-point pollution loads was analysed. Improvement of water cycle and reduction of non-point pollution loads were analyzed including the property of rainfall and soil over long term simulation. The model was executed according to scenario based on combination of LID as changing conductivity in accordance with soil type of the watershed. Also, this study evaluated area of LID application that meets the efficiency of conventional management as a criteria for area of LID practices applying to sewer treatment district by comparing the efficiency of LID application with that of conventional method.

A Study on the Urban Flood Damage Reduction Using the LID Under Climate Change : Case Study on Gulpo Stream Basin (기후변화에 따른 도시홍수 저감방안으로서의 LID 기법 적용성 평가 - 굴포천 유역을 대상으로 -)

  • Song, Chang-Joon;Kim, Soo-Jun;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.1169-1173
    • /
    • 2010
  • 기후변화의 영향은 전세계적으로 재해를 가중시키는 역할을 하고 있다. 특히 인구밀도와 자산가치가 높은 도시지역의 홍수피해가 급증함에 따라 이를 방지하기 위한 대책마련이 시급히 요구되고 있다. 본 연구에서는 미래의 기후변화에 대응하기 위한 방안으로 도심지역에 LID(Low Impact Development)기법을 적용하여 도시 홍수의 저감방안으로서 그 적용성을 평가하고자 하였다. 이를 위해, 굴포천 유역을 대상으로 XP-SWMM을 이용하여 관망을 구축하고 현재 강우자료(1961~2000년)와 미래의 강우자료(KMA-A2 기후변화 시나리오, 2001~2090년)를 적용하여 현재와 미래의 강우조건에 따른 도심지역의 홍수범람 및 유출량을 산정하였다. 이 결과를 바탕으로 모델링된 지역 중, 기후변화 전후의 상습 홍수범람지역을 우선적으로 선정하여 LID기법을 적용하였다. 효율적인 LID기법의 적용을 위해 토지이용 변화에 따른 시나리오를 작성하고, 이에 따른 유출곡선지수(Curve Number, CN)값을 산정하여 도시홍수 범람지역 및 유출량의 변화를 검토하는데 이용하였다. 분석 결과, LID기법을 적용하였을 경우 기후변화에 따른 도심지역의 홍수 및 유출량을 현재 수준으로 낮출 수 있다는 결과를 얻을 수 있었다. 본 연구를 통하여 개발이 완료된 도시지역에도 효율적인 LID기법의 적용에 따라 도시홍수 및 유출량을 효과적으로 저감할 수 있을 뿐만 아니라, 기후변화에 대응하기 위한 하나의 대응책으로써 충분한 역할을 할 수 있을 것이라고 판단된다.

  • PDF

Analysis of Runoff Reduction Efficiency and Characteristic for Test-bed of Low Impact Development Techniques on Sidewalk : for Permeable Block, Vertical Infiltration Pipe, Storage Tank (보도 공간을 활용한 저영향개발 기법 테스트베드의 특성 및 유출저감 효율 분석 : 투수블록, 수직침투관, 빗물저류조를 대상으로)

  • Lee, Daehee
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.79-89
    • /
    • 2017
  • The purpose of this study is to analyze the characteristics of Low Impact Development(LID) techniques in LID test-bed and to analyze runoff reduction efficiency of that techniques. The K research institute with a test-bed for LID technique was selected as a study area and a stormwater management target was set to manage water quality and quantity of runoff. The Permeable Block, Vertical Infiltration Pipe(VIP) and Storage Tank were selected and their characteristics were analyzed. Eight scenarios were created from the selected LID facilities and SWMM-LID runoff simulation was carried out. The optimization method of the LID techniques is suggested by analyzing the stormwater runoff characteristics for each scenario. As a result of SWMM-LID runoff simulations, the peak flow was reduced by up to 64.4 % and the total runoff was reduced by up to 35.2 %. In addition, it is effective to apply the permeable block and VIP to the area where the ratio of sidewalk is large, and it is considered that the application of the storage tank is effective in reducing the runoff in the area where the ratio of sidewalk is small.

Analyzing the Efficiency of LID Technique for Urban Non-point Source Management - Focused on City of Ulsan in Korea - (저영향개발기법 적용을 통한 비점오염원 저감 및 비용효율 분석에 관한 실증적 연구 - 울산광역시를 대상으로 -)

  • Lim, Yong-Kyun;Jung, Ju-Chul;Shin, Hyun-Suk;Ha, Gyoung-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.2
    • /
    • pp.1-14
    • /
    • 2014
  • The purpose of this study is to identify the efficiency of LID technologies for controlling non-point source pollution from urban areas. The recent technical responses to managing water resource and urban areas according to the influence of climate change is an important national policy, along with green growth. Through various reference studies reasonable ways to consider a wholistic plan on urban-eco-friendly river management, the Low Impact Development (LID) as the adequate river management method is being undertaken in foreign countries to technically apply to urban plans. However, the LID is at the initial stage in Korea, with no specific studies implemented. Thus, this study explored whether LID technologies can be efficient measures to control non-point source pollution on the cost side. Ulsan's Namgu and Bukgu have been chosen as case studies that illustrate the efficiency of the LID technologies. On investigation, if LID technologies are designed properly, the efficiency of them is expected to higher than that of sewage treatment plant.

Analysis of Runoff Reduction Characteristics with LID Adaptation and LID Applicability at Bimodal Tram Route (LID 개념 적용으로 인한 유출 감소 특성 가능성 분석 및 바이모달 트램 전용노선에서의 적용성 검토)

  • Park, Jun-Ho;Park, Young-Kon;Yoon, Hee-Taek;Yoo, Yong-Gu;Kim, Jong-Gun;Park, Youn-Shik;Lim, Kyoung-Jae
    • Proceedings of the KSR Conference
    • /
    • /
    • pp.147-150
    • /
    • 2008
  • Changes in land uses at urbanizing areas are causing flooding, increase in NPS pollutants. Thus, Low Impact Development (LID) concept is now being employed in urban planning for sustainable development. Compared with the conventional BMPs, the LID is a new concept in urban planning to minimize the impacts of urbanization for site-specific LID IMPs. The objective of this study is to analyze the efficiency of LID adoption in study watershed in peak rate runoff and runoff volume reduction perspectives. The analysis revealed that the peak rate runoff and runoff volume decreased significantly with the LID adoption. This indicates that the Bimodal tram route with grass installed at the center of the road will contribute reduction in surface runoff and peak rate runoff, and also in NPS pollutant generation from the Bimodal tram route.

  • PDF

Assessment of Low Impact Development (LID) Integrated in Local Comprehensive Plans for Improving Urban Water Cycle (도시 물순환 개선을 위한 도시기본계획과 저영향 개발(LID) 연계성 분석)

  • Kang, Jung-Eun;Hyun, Kyoung-Hak;Park, Jong-Bin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1625-1638
    • /
    • 2014
  • Recently, Low Impact Development (LID) has been emphasized as a critical strategy for improving urban water cycle and adapting to climate change. LID is needed to be incorporated in urban planning and development process for effective implementation in the real world. However, little research has examined the relationship between urban planning and LID in Korea. This study addresses this critical gap by 1) examining whether current urban planning institutional system considers LID or not and 2) assessing the extent to which local comprehensive plans integrate LID in seven large cities. Study results show that a few planning guidelines declaratively mention the need of LID but they don't include specific LID strategies. In addition, we found that 7 local comprehensive plans in the sample received a mean score of 11.71, which represents 19.52% of the total possible points and there are wide variations among cities. These findings indicate that there is still considerable room for improvement of local governments on LID. We propose the revision of planning guideline by incorporating LID principles and non-structural and structural LID technologies.

Analysis of Stormwater Runoff Characteristics for Spatial Distribution of LID Element Techniques using SWMM (SWMM 모형을 이용한 LID 요소기술의 공간적 분포에 따른 우수유출특성 분석)

  • Yeon, Jong Sang;Jang, Young Su;Lee, Jae Hyuk;Shin, Hyun Suk;Kim, Eung Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3983-3989
    • /
    • 2014
  • As the storm water runoff characteristics in urban areas have changed owing to urbanization, centralized facilities to reduce the urban flood runoff had been implemented. On the other hand, because they have their limitations, LID (Low Impact Development) of the distributed facilities for storm water runoff reduction is being actively planned and applied. The purpose of this study was to analyze the runoff characteristics for the spatial distribution of typical LID element techniques. This study set a study basin consisting of the five subbasins with the same basin and drainage systems, and analyzed the flood runoff characteristics from the two scenarios, one is for the locations and the other is for the number of green roofs (GR) and permeable pavement (PP), respectively, selected as typical LID element techniques. The SWMM implementation results showed that GR reduces 11.07% of the total and 3.42% of the peak amounts of storm water runoff, and PP leads to 18.09% of the total and 17.94% of the peak discharge reduction for a subbasin. Such a reduction rate is constant regardless of the LID locations, and increases linearly with the number of LID applications. The different runoff reduction rates between the GR and PP applications appear to be due to the effects of the different hydraulic conductivities in the control parameters for each LID.

Analysis of Water Cycle Effect according to Application of LID Techniques (LID 기법 적용에 따른 물순환 효과분석)

  • Lee, Jungmin;Lee, Yun;Choi, Jongsoo
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.411-421
    • /
    • 2014
  • At present, the development in rainwater management approach is still insufficient due to the numerous adverse effects of urbanization. Storm water management is being developed to restore the natural state of water cycle undergoing several processes which were hindered such as infiltration and evapotranspiration. Low Impact Development (LID) was established in order to reduce the negative effects of urbanization to our environment. These developments can be used to respond to the effects of climate change such as heat island phenomenon. The effects of the development of new town in the district plan with application of LID facilities were studied and reported. Typically, LID facilities were applied in small scale development and were rarely used in large-scale development. Most of studies, however, did not assessment the effects of large-scale development projects with LID application to the natural water cycle. This study was conducted to simulate the urban hydrologic cycle simulation on Asan-Tangjeong in Korea. This study may be used in urban hydrologic cycle simulation and establishment of an urban water management plan in the future. Lastly, this study generated a model using the recently updated SWMM5 which determined the hydrologic cycle simulation after installation of LID facilities.

Runoff analysis according to LID facilities in climate change scenario - focusing on Cheonggyecheon basin (기후변화 시나리오에서의 LID 요소기술 적용에 따른 유출량 분석 - 청계천 유역을 대상으로)

  • Yoon, EuiHyeok;Jang, Chang-Lae;Lee, KyungSu
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.583-595
    • /
    • 2020
  • In this study, using the RCP scenario for Hyoja Drainage subbasin of Cheonggyecheon, we analyzed the change with the Historical and Future rainfall calculated from five GCMs models. As a result of analyzing the average rainfall by each GCMs model, the future rainfall increased by 35.30 to 208.65 mm from the historical rainfall. Future rainfall increased 1.73~16.84% than historical rainfall. In addition, the applicability of LID element technologies such as porous pavement, infiltration trench and green roof was analyzed using the SWMM model. And the applied weight and runoff for each LID element technology are analyzed. As a result of the analysis, although there was a difference for each GCMs model, the runoff increased by 2.58 to 28.78%. However, when single porous pavement and Infiltration trench were applied, Future rainfall decreased by 3.48% and 2.74%, 8.04% and 7.16% in INM-CM4 and MRI-CGCM3 models, respectively. Also, when the two types of LID element technologies were combined, the rainfall decreased by 2.74% and 2.89%, 7.16% and 7.31%, respectively. This is less than or similar to the historical rainfall runoff. As a result of applying the LID elemental technology, it was found that applying a green roof area of about 1/3 of the urban area is the most effective to secure the lag time of runoff. Moreover, when applying the LID method to the old downtown area, it is desirable to consider the priority order in the order of economic cost, maintenance, and cityscape.