• Title/Summary/Keyword: LI5

Search Result 5,299, Processing Time 0.039 seconds

A Comparative Study on the Effectiveness of Directional Supplementation and Twirling Supplementation on Thermographic Change (영수보법(迎隨補法)과 염전보법(捻轉補法)이 체열변화(體熱變化)에 미치는 상대적 효과 비교)

  • Lee, Bong-Hyo;Kim, Jae-Soon;Park, Jae-Hyeon;Park, Jong-Hyeok;Yun, Yong-Sik;Lee, Kyung-Seok;Lee, Eun-Jung;Park, Ji-Ha;Lee, Kyung-Min
    • Korean Journal of Oriental Medicine
    • /
    • v.16 no.2
    • /
    • pp.193-198
    • /
    • 2010
  • Objectives : The directional supplementation and draining and twirling supplementation and draining have been used widely in oriental medical clinic. The aim of this study is to compare the effects between directional supplementation and draining method and twirling supplementation and draining. Methods : Clinical experiment was performed with 21 students of oriental medical college of Daegu Haany university. Acupuncture was applied at left Hapgok (LI4) with directional supplementation and twirling supplementation respectively, and the thermographic change was checked using DITI (Digital Infrared Thermographic Image). Results and Conclusion : A significant thermographic change was observed at bilateral Igan (LI2), Yanggye (LI5), Gokji (LI11), and Yeonghyang (LI20) in directional supplementation. A significant thermographic change was observed at bilateral Igan (LI2), Yanggye (LI5), and Yeonghyang (LI20) in twirling supplementation. Based on the thermographic change, it could be demonstrated that directional supplementation is more effective that twirling supplementation.

Crystal Structure and Dielectric Property of $LiATiO_4$ Spinel Phase ($LiATiO_4$ 스피넬 상의 결정구조 및 유전특성)

  • Kim, Jeong-Seog;Kim, Nam-Hoon;Cheon, Chae-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.237-238
    • /
    • 2006
  • The electrical properties such as dielectric constants and dielectric losses in the spinel samples of $LiGaTiO_4$, Li(Ga,Eu)$TiO_4$, $Li(Ga.Yb)TiO_4$ have been characterized by varying measuring temperature and frequency. The long range order structures are analyzed by rietveld refinement method. and local atomic disorder structures are analyzed by MEM (maximum entropy method). The relation between the crystal structure and dielectric properties are discussed. $LiGaTiO_4$ spinel has the IMMA with lattice constant, a = 5.86333, b=17.5872. c = 8.28375 ${\AA}$, Li-sites are partially substituted by Ga or Ti. Two crystallographic oxygen sites are partially occupied(40~50%). The dielectric constants of $LiGaTiO_4$, $LiYbTiO_4$, and $LiGa_{2/6}Eu_{1/6}Ti_{1.5}O_4$ ceramics were 127, 75 and 272, respectively at 100 kHz. The dielectric relaxation were observed in the $LiGaTiO_3$ ceramics and the temperature where dielectric loss shows maximum was $390^{\circ}C$ at 1 kHz and increased with increasing the measuring frequency.

  • PDF

Efficient Power Reduction Technique of LiDAR Sensor for Controlling Detection Accuracy Based on Vehicle Speed (차량 속도 기반 정확도 제어를 통한 차량용 LiDAR 센서의 효율적 전력 절감 기법)

  • Lee, Sanghoon;Lee, Dongkyu;Choi, Pyung;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.5
    • /
    • pp.215-225
    • /
    • 2020
  • Light detection and ranging (LiDAR) sensors detect the distance of the surrounding environment and objects. Conventional LiDAR sensors require a certain amount of a power because they detect objects by transmitting lasers at a regular interval depending on a constant resolution. The constant power consumption from operating multiple LiDAR sensors is detrimental to autonomous and electric vehicles using battery power. In this paper, we propose two algorithms that improve the inefficient power consumption during the constant operation of LiDAR sensors. LiDAR sensors with algorithms efficiently reduce the power consumption in two ways: (a) controlling the resolution to vary the laser transmission period (TP) of a laser diode (LD) depending on the vehicle's speed and (b) reducing the static power consumption using a sleep mode depending on the surrounding environment. A proposed LiDAR sensor with a resolution control algorithm reduces the power consumption of the LD by 6.92% to 32.43% depending on the vehicle's speed, compared to the maximum number of laser transmissions (Nx·max). The sleep mode with a surrounding environment-sensing algorithm reduces the power consumption by 61.09%. The proposed LiDAR sensor has a risk factor for 4-cycles that does not detect objects in the sleep mode, but we consider it to be negligible because it immediately switches to an active mode when a change in surrounding conditions occurs. The proposed LiDAR sensor was tested on a commercial processor chip with the algorithm controlling the resolution according to the vehicle's speed and the surrounding environment.

Parameter Analysis for Super-Resolution Network Model Optimization of LiDAR Intensity Image (LiDAR 반사 강도 영상의 초해상화 신경망 모델 최적화를 위한 파라미터 분석)

  • Seungbo Shim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.137-147
    • /
    • 2023
  • LiDAR is used in autonomous driving and various industrial fields to measure the size and distance of an object. In addition, the sensor also provides intensity images based on the amount of reflected light. This has a positive effect on sensor data processing by providing information on the shape of the object. LiDAR guarantees higher performance as the resolution increases but at an increased cost. These conditions also apply to LiDAR intensity images. Expensive equipment is essential to acquire high-resolution LiDAR intensity images. This study developed artificial intelligence to improve low-resolution LiDAR intensity images into high-resolution ones. Therefore, this study performed parameter analysis for the optimal super-resolution neural network model. The super-resolution algorithm was trained and verified using 2,500 LiDAR intensity images. As a result, the resolution of the intensity images were improved. These results can be applied to the autonomous driving field and help improve driving environment recognition and obstacle detection performance

Crystalline and electrical properties of ${Li_2}{CO_3}$ and MgO doped ${Ba_{0.5}}{Sr_{0.5}}{TiO_3}$ composites (${Li_2}{CO_3}$와 MgO가 첨가된 ${Ba_{0.5}}{Sr_{0.5}}{TiO_3}$의 결정학적 전기적 특성)

  • You, Hee-Wook;Park, Yong-Jun;Nam, Song-Min;Koo, Sang-Mo;Park, Jae-Yeong;Lee, Young-Hie;Koh, Jung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.3-4
    • /
    • 2006
  • ${Li_2}{CO_3}$ and MgO doped paraelectric ${Ba_{0.5}}{Sr_{0.5}}{TiO_3}$, materials were prepared and compared for LTCC applications. In these days LTCC (Low Temperature Co-fired Ceramics) technology has been widely employed for electronic modules for the communication systems such as front-end modules, antenna modules, and switching modules. In this paper, 1 ${\sim}$ 5 wt % of ${Li_2}{CO_3}$, and 30 wt % of MgO were added to ${Ba_{0.5}}{Sr_{0.5}}{TiO_3}$, respectively. The crystalline properties and electrical properties will be compared and discussed.

  • PDF

Electrical Properties of $Li_2O-V_2O_5-P_2O_5$ Glasses for Solid State Electrolyte (고체전해질용 $Li_2O-V_2O_5-P_2O_5$ 유리의 전기적 특성)

  • Lee, Chang-Hee;Son, Myung-Mo;Lee, Hun-Soo;Gu, Hal-Bon;Park, Hee-Chan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.334-335
    • /
    • 2005
  • Ternary tellurite glassy systems ($Li_2O-V_2O_5-P_2O_5$) have been synthesised using Vanadium oxide as a network former and Lithium oxide as network modifier. The addition of a metal? oxide makes them electric or mixed electric-ionic conductors, which are of potential interest as cathode' materials for solid-state batteries. This glass-ceramics crystallized from the $Li_2O-V_2O_5-P_2O_5$ system are particularly interesting, because they exhibit high conductivity (up to $5.95\times10^{-4}$ S/cm) at room temperature. the glass samples were prepared by quenching the melt on the copper plate and the glass-ceramics were heat-treated at crystallizing temperature determined from differential thermal analysis (DTA). The electric D.C conductivity result have been analyzed in terms of a small polaron-hopping model.

  • PDF

Synthesis of Li2MnSiO4 by Solid-state Reaction (고상반응법을 이용한 Li2MnSiO4 합성)

  • Kim, Ji-Su;Shim, Joong-Pyo;Park, Gyung-Se;Sun, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.398-402
    • /
    • 2012
  • Synthesis of $Li_2MnSiO_4$ was attempted by the conventional solid-state reaction method, and the phase formation behavior according to the change of the calcination condition was investigated. When the mixture of the three source materials, $Li_2O$, MnO and $SiO_2$ powders, were used for calcination in air, it was difficult to develop the $Li_2MnSiO_4$ phase because the oxidation number of $Mn^{2+}$ could not be maintained. Therefore, two-step calcination was applied: $Li_2SiO_3$ was made from $Li_2O$ and $SiO_2$ at the first step, and $Li_2MnSiO_4$ was synthesized from $Li_2SiO_3$ and MnO at the second step. It was easy to make $Li_2MnSiO_3$ from $Li_2O$ and $SiO_2$. $Li_2MnSiO_4$ single phase was developed by the calcination at $900^{\circ}C$ for 24 hr in Ar atmosphere as the oxidation of $Mn^{2+}$ was prevented. However, the $Li_2MnSiO_4$ was ${\gamma}-Li_2MnSiO_4$, one of the polymorph of $Li_2MnSiO_4$, which could not be used as the cathode materials in Li-ion batteries. By applying the additional low temperature annealing at $400^{\circ}C$, the single phase ${\beta}-Li_2MnSiO_4$ powder was synthesized successfully through the phase transition from ${\gamma}$ to ${\beta}$ phase.

Electrochemical Performance of Li4Ti5O12 Particles Manufactured Using High Pressure Synthesis Process for Lithium Ion Battery (초고압 합성법으로 제조한 리튬이온전지 음극활물질 Li4Ti5O12의 전기화학적 특성)

  • Ji, Sung Hwa;Jo, Wan Taek;Kim, Hyun Hyo;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.337-342
    • /
    • 2018
  • Using a high pressure homonizer, we report on the electrochemical performance of $Li_4Ti_5O_{12}(LTO)$ particles manufactured as anode active material for lithium ion battery. High-pressure synthesis processing is performed under conditions in which the mole fraction of Li/Ti is 0.9, the synthesis pressure is 2,000 bar and the numbers of passings-through are 5, 7 and 10. The observed X-ray diffraction patterns show that pure LTO is manufactured when the number of passings-through is 10. It is found from scanning electron microscopy analysis that the average size of synthesized particles decreases as the number of passings-through increases. $LiCoO_2-based$ active cathode materials are used to fabricate several coin half/full cells and their battery characteristics such as lifetime, rate capability and charge transfer resistance are then estimated, revealing quite good electrochemical performance of the LTO particles as an effective anode active material for lithium secondary batteries.