• Title/Summary/Keyword: LFCC

Search Result 5, Processing Time 0.016 seconds

Evaluation of Frequency Warping Based Features and Spectro-Temporal Features for Speaker Recognition (화자인식을 위한 주파수 워핑 기반 특징 및 주파수-시간 특징 평가)

  • Choi, Young Ho;Ban, Sung Min;Kim, Kyung-Wha;Kim, Hyung Soon
    • Phonetics and Speech Sciences
    • /
    • v.7 no.1
    • /
    • pp.3-10
    • /
    • 2015
  • In this paper, different frequency scales in cepstral feature extraction are evaluated for the text-independent speaker recognition. To this end, mel-frequency cepstral coefficients (MFCCs), linear frequency cepstral coefficients (LFCCs), and bilinear warped frequency cepstral coefficients (BWFCCs) are applied to the speaker recognition experiment. In addition, the spectro-temporal features extracted by the cepstral-time matrix (CTM) are examined as an alternative to the delta and delta-delta features. Experiments on the NIST speaker recognition evaluation (SRE) 2004 task are carried out using the Gaussian mixture model-universal background model (GMM-UBM) method and the joint factor analysis (JFA) method, both based on the ALIZE 3.0 toolkit. Experimental results using both the methods show that BWFCC with appropriate warping factor yields better performance than MFCC and LFCC. It is also shown that the feature set including the spectro-temporal information based on the CTM outperforms the conventional feature set including the delta and delta-delta features.

Quantitative Measure of Speaker Specific Information in Human Voice: From the Perspective of Information Theoretic Approach (정보이론 관점에서 음성 신호의 화자 특징 정보를 정량적으로 측정하는 방법에 관한 연구)

  • Kim Samuel;Seo Jung Tae;Kang Hong Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1E
    • /
    • pp.16-20
    • /
    • 2005
  • A novel scheme to measure the speaker information in speech signal is proposed. We develope the theory of quantitative measurement of the speaker characteristics in the information theoretic point of view, and connect it to the classification error rate. Homomorphic analysis based features, such as mel frequency cepstral coefficient (MFCC), linear prediction cepstral coefficient (LPCC), and linear frequency cepstral coefficient (LFCC) are studied to measure speaker specific information contained in those feature sets by computing mutual information. Theories and experimental results provide us quantitative measure of speaker information in speech signal.

Performance Comparison of Deep Feature Based Speaker Verification Systems (깊은 신경망 특징 기반 화자 검증 시스템의 성능 비교)

  • Kim, Dae Hyun;Seong, Woo Kyeong;Kim, Hong Kook
    • Phonetics and Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.9-16
    • /
    • 2015
  • In this paper, several experiments are performed according to deep neural network (DNN) based features for the performance comparison of speaker verification (SV) systems. To this end, input features for a DNN, such as mel-frequency cepstral coefficient (MFCC), linear-frequency cepstral coefficient (LFCC), and perceptual linear prediction (PLP), are first compared in a view of the SV performance. After that, the effect of a DNN training method and a structure of hidden layers of DNNs on the SV performance is investigated depending on the type of features. The performance of an SV system is then evaluated on the basis of I-vector or probabilistic linear discriminant analysis (PLDA) scoring method. It is shown from SV experiments that a tandem feature of DNN bottleneck feature and MFCC feature gives the best performance when DNNs are configured using a rectangular type of hidden layers and trained with a supervised training method.

Laryngeal Cancer Screening using Cepstral Parameters (켑스트럼 파라미터를 이용한 후두암 검진)

  • 이원범;전경명;권순복;전계록;김수미;김형순;양병곤;조철우;왕수건
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.14 no.2
    • /
    • pp.110-116
    • /
    • 2003
  • Background and Objectives : Laryngeal cancer discrimination using voice signals is a non-invasive method that can carry out the examination rapidly and simply without giving discomfort to the patients. n appropriate analysis parameters and classifiers are developed, this method can be used effectively in various applications including telemedicine. This study examines voice analysis parameters used for laryngeal disease discrimination to help discriminate laryngeal diseases by voice signal analysis. The study also estimates the laryngeal cancer discrimination activity of the Gaussian mixture model (GMM) classifier based on the statistical modelling of voice analysis parameters. Materials and Methods : The Multi-dimensional voice program (MDVP) parameters, which have been widely used for the analysis of laryngeal cancer voice, sometimes fail to analyze the voice of a laryngeal cancer patient whose cycle is seriously damaged. Accordingly, it is necessary to develop a new method that enables an analysis of high reliability for the voice signals that cannot be analyzed by the MDVP. To conduct the experiments of laryngeal cancer discrimination, the authors used three types of voices collected at the Department of Otorhinorlaryngology, Pusan National University Hospital. 50 normal males voice data, 50 voices of males with benign laryngeal diseases and 105 voices of males laryngeal cancer. In addition, the experiment also included 11 voices data of males with laryngeal cancer that cannot be analyzed by the MDVP, Only monosyllabic vowel /a/ was used as voice data. Since there were only 11 voices of laryngeal cancer patients that cannot be analyzed by the MDVP, those voices were used only for discrimination. This study examined the linear predictive cepstral coefficients (LPCC) and the met-frequency cepstral coefficients (MFCC) that are the two major cepstrum analysis methods in the area of acoustic recognition. Results : The results showed that this met frequency scaling process was effective in acoustic recognition but not useful for laryngeal cancer discrimination. Accordingly, the linear frequency cepstral coefficients (LFCC) that excluded the met frequency scaling from the MFCC was introduced. The LFCC showed more excellent discrimination activity rather than the MFCC in predictability of laryngeal cancer. Conclusion : In conclusion, the parameters applied in this study could discriminate accurately even the terminal laryngeal cancer whose periodicity is disturbed. Also it is thought that future studies on various classification algorithms and parameters representing pathophysiology of vocal cords will make it possible to discriminate benign laryngeal diseases as well, in addition to laryngeal cancer.

  • PDF

E-Banking Performance in Uganda: A Case Study of Bank of Uganda

  • Nuwagaba, Alfred
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.3 no.2
    • /
    • pp.13-20
    • /
    • 2015
  • Online or e-banking has been adopted as key banking innovation in Uganda adopted by all financial institutions in the country. This research explored the state of e-banking and its efficacy in Uganda banking industry. A correlation analysis approach was adopted for this research. In Uganda, the banking sector has been liberalized with telecommunications allowed to effect e-banking and ecommerce transactions. The study concentrated on the periods of years 2011/2012 and 2012/2013. Findings from this research revealed that BOU uses UNISS for real time gross settlement (RTGS). Since its adoption a +1 coefficient correlation was realized. With the use of mobile money, also a +1 coefficient correlation was achieved for the period under consideration. As regards the use of e-cheques, there was a drop reflected by -2.8 percent which could have been attributed to perception of the users, though there was a +1 coefficient correlation when considering e-cheque transactions and the monetary value. The use of EFT in Uganda generated a +1 coefficient correction considering the number of users and the monetary value involved. Bank of Uganda should work hard and make or go live with electronic banking supervision software which would aid them with their supervisory roles.